[发明专利]一种基于半监督学习的移动边缘计算速率最大化方法有效
申请号: | 201810343311.6 | 申请日: | 2018-04-17 |
公开(公告)号: | CN108738046B | 公开(公告)日: | 2021-04-06 |
发明(设计)人: | 黄亮;冯旭;钱丽萍;吴远 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | H04W24/02 | 分类号: | H04W24/02;H04W28/06;H04W28/10 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 监督 学习 移动 边缘 计算 速率 最大化 方法 | ||
一种基于半监督学习的移动边缘计算速率最大化方法,包括以下步骤:1)每个无线设备都需要与基站建立联系;2)使用两个互不重叠的集合M0和M1分别表示在本地计算模式和分流模式的所有无线设备;3)处在集合M0中的无线设备能够收集能量并同时处理本地任务,而处在集合M1中的无线设备只能在收集能量后将任务分流至基站处理;4)所有无线设备的模式选择将通过它们的信道增益hi决定,半监督学习的作用则是将它们的信道增益作为输入,然后生成一个能使所有无线设备的总和计算速率最大化的最优模式选择,即决定哪些无线设备的任务在本地处理而哪些分流至基站处理。本发明在保证用户体验的前提下最大化所有无线设备的总和计算速率。
技术领域
本发明属于通信领域,尤其是涉及移动边缘计算的通信系统以及基于半监督学习的移动边缘计算速率最大化方法。
背景技术
物联网技术的最新发展是迈向真正智能和自主控制的关键一步,在许多重要的工业和商业系统中尤为突出。在一个物联网网络中,部署了大量的能够进行通信和计算的无线设备(WDs),由于设备尺寸的限制和生产成本考虑,物联网设备(如传感器)经常携带容量有限的电池和节能的低性能处理器,因此,有限的设备寿命和低计算能力无法支持越来越多需要高性能计算的可持续的新应用程序,例如自动驾驶和增强现实。无线能量传输系统(WPT)的部署可以解决前面提到的两个性能问题,但频繁的设备电池故障不仅扰乱了正常的个人无线设备操作也会显著降低整体网络性能,比如,无线传感器网络中的传感精度。传统的无线系统需要频繁手动更换电池,这很昂贵而且很不方便,由于严格的电池容量限制,在以电池供电的无线系统中,能耗最小化,延长无线设备操作生命周期是一个关键的设计。每一个能量收集的无线设备都遵循二进制计算分流策略,即,一个任务的数据集可以在本地被执行或通过远程的服务器分流来执行。为了最大化所有无线设备的总和计算速率,找到最优的单独计算模式选择是很有必要的。
发明内容
为了克服现有无线能量传输系统的总和计算速率较低的不足,为了最大化所有无线设备的总和计算率,找到最优的单独计算模式选择和系统传输时间分配,本发明提供了一种基于半监督学习的移动边缘计算速率最大化方法,在保证用户体验的前提下最大化所有无线设备的总和计算速率。
本发明解决其技术问题所采取的技术方案是:
一种基于半监督学习的移动边缘计算速率最大化方法,所述方法包括以下步骤:
1)在一个由一个基站和多个无线设备组成由无线供电的边缘计算系统中,基站和每个无线设备都有一个单独的天线;射频能量发射器和边缘计算服务器都集成在基站中,假设基站有一个稳定的能量供给,并且能广播射频能量给所有无线设备;每一个无线设备都有一个能量收集电路和一个可充电电池,通过存储收集的能量来完成一些任务;在这个无线通信系统中,每个无线设备都需要与基站建立联系,无线设备i与基站之间的信道增益hi计算为:
其中,各参数定义如下:
Ad:天线增益;
π:圆周率;
fc:载波频率;
di:无线设备i与基站之间的距离;
de:路径损耗指数;
2)假设每一个无线设备的计算任务可以在本地低性能的微处理器上执行或者分流给具有更强大的处理能力的边缘计算服务器,它将处理计算任务然后将结果发送回无线设备;假设无线设备采用二进制计算分流规则,也就是,一个无线设备必须选择是本地计算模式或者分流模式;使用两个互不重叠的集合和分别表示在本地计算模式和分流模式的所有无线设备,所有无线设备集合表示为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810343311.6/2.html,转载请声明来源钻瓜专利网。