[发明专利]一种梯级电站的上下游水位预测方法有效

专利信息
申请号: 201810464065.X 申请日: 2018-05-15
公开(公告)号: CN108764539B 公开(公告)日: 2021-10-15
发明(设计)人: 刘亚新;樊启萌;华小军;刘志武;徐杨;杨旭;张玉柱 申请(专利权)人: 中国长江电力股份有限公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06N3/04
代理公司: 宜昌市三峡专利事务所 42103 代理人: 李登桥
地址: 443002 湖*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 梯级 电站 下游 水位 预测 方法
【说明书】:

发明公开了一种梯级电站的上下游水位预测方法,它包括以下步骤:步骤1,选取输入变量与输出变量;步骤2,对数据进行标准化处理,消除量纲的影响;步骤3,确定输入向量维数、LSTM层数、输出向量维数,以及时间步;步骤4,LSTM的前向传播过程和误差反向传播过程;前向传播过程按时间步依次输入LSTM网络,得到相应的输出值;以输出值与真实值的误差平方和为损失函数,进行误差沿时间反向传播来更新参数;步骤5,运用训练好的模型进行多时刻连续预测。将LSTM应用到梯级电站的水位预测中,可以捕捉到上游电站对下游电站的滞后性影响信息,提高预测精度,为科学的调度决策提供更加可靠的理论支撑。

技术领域

本发明涉及一种梯级电站的上下游水位预测方法,属于水位预测技术领域。

背景技术

水位预测是指提前一定时间对水电站上游或下游水位进行预测。准确的水位预测对水电站调度意义重大,然而,水电站在运行过程中受到诸多因素影响,导致水电站的水位变化预测通常偏差会较大,进而影响到调度方案的实施效果。特别是具有紧密水力联系的梯级水电站,其水位上涨、下落存在滞后性,涨水、平水、退水后的稳定水位也不相同,使得下游径流式电站水位的准确预测更难实现。

目前,水利水电行业大多采用出库流量来预测水位,或者将水位数据看成时间序列建立相应预测模型。如王蒙蒙等基于支持向量回归模型对洞庭湖水位进行了预测,其预测变量为三峡逐日出库流量、清江逐日流量及洞庭湖“四水”逐日入湖流量。李欣等建立基于时空序列的RBF神经网络预测模型,来预测金沙江下游向家坝水文站的水位情况。Ashaary等采用BP神经网络来预测Timah Tasoh水库的水位变化,其采用窗处理的方式将前w个时刻的水位数据作为一个输入样本。但在梯级电站的水位预测方面,尤其是下游电站的水位,由于梯级电站之间的紧密联系,上游电站的运行情况会影响到下级电站的水位,并且因水流传播导致影响存在时间滞后性,而普通的前馈神经网络如BP神经网络或RBF神经网络难以捕捉这一特征。并且,若采用窗处理的方式将前多个时刻的水位和出力数据作为输入样本,会使输入层节点偏多,若进一步要连续预测多时刻的上下游水位,则输入层节点会随之增多,导致模型训练参数偏多,这无疑会加大模型训练的难度,降低学习效率。

发明内容

本发明提供一种梯级电站的上下游水位预测方法,此预测方法基于长短时记忆网络(Long Short-Term Memory,LSTM)。LSTM是循环神经网络的一种成功变体,能够克服原始循环神经网络的不足,学习到数据之间的长期依赖关系,将LSTM应用到水电站的水位预测中,可以保留有用的历史信息,将过去时刻的上下游水电站运行数据以及上游电站水位数据的影响反映到当前下游电站的水位预测之中。

为了实现上述的技术特征,本发明的目的是这样实现的:一种梯级电站的上下游水位预测方法,其特征在于,它包括以下步骤:

步骤1,选取输入变量与输出变量;

步骤2,对数据进行标准化处理,消除量纲的影响;

步骤3,确定输入向量维数、LSTM层数、输出向量维数,以及时间步;

步骤4,LSTM的前向传播过程和误差反向传播过程;前向传播过程按时间步依次输入LSTM网络,得到相应的输出值;以输出值与真实值的误差平方和为损失函数,进行误差沿时间反向传播来更新参数;

步骤5,运用训练好的模型进行多时刻连续预测。

2、根据权利要求1所述的一种梯级电站的上下游水位预测方法,其特征在于:所述步骤1中的输入变量为上游电站和下游电站各分电厂的出力,上游电站的上游水位;所述输出变量为下游电站的上下游水位。

3、根据权利要求1所述的一种梯级电站的上下游水位预测方法,其特征在于:所述步骤2中标准化处理过程为:

采用min-max标准化的方法,将步骤1中原始值映射到[-1,1]区间,转换函数如下:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国长江电力股份有限公司,未经中国长江电力股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810464065.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top