[发明专利]基于动态阈值和多分类器的文本情感分析方法在审

专利信息
申请号: 201810588300.4 申请日: 2018-06-08
公开(公告)号: CN108920451A 公开(公告)日: 2018-11-30
发明(设计)人: 韩玥;王颖;金志刚 申请(专利权)人: 天津大学
主分类号: G06F17/27 分类号: G06F17/27;G06F17/30;G06K9/62
代理公司: 天津市北洋有限责任专利代理事务所 12201 代理人: 程毓英
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 可靠度 标注 抽样样本 多分类器 文本情感 分类器 预测 抽样 分词预处理 过程重复 基分类器 样本序列 半监督 数据记 向量 样本 分析 文本 更新 转化
【说明书】:

发明涉及一种基于动态阈值和多分类器的半监督文本情感分析方法,包括:根据情感的不同,对其中小部分数据进行情感标注并记为L,未标注情感的数据记为U;对数据进行分词预处理;用Word2vec工具将词转化为数值型向量;采用有放回的抽样方法对L进行抽样,该过程重复T次,相应得到T个抽样样本序列Lt和T个未抽中样本序列OOBt;选取一个抽样样本序列Lt,和无情感标注的数据,这里记为Ut;用Lt训练Support Vector Machine(SVM)分类器Ct,用Ct对Ut进行预测,将可靠度达到阈值的样本l加入Lt中,并从Ut中将其删去;更新阈值;用OOBt计算分类器Ct的可靠度Pt;得到T个基分类器BC和其相应的可靠度P;用T个BC对预测文本s进行预测。

技术领域

本发明属于基于半监督学习的文本分类技术领域,具体涉及一种基于动态阈值和多分类器的文本情感分析方法。

背景技术

随着社交网络的迅速发展,越来越多的人倾向于在线上平台发表自己的意见和看法,比如目前流行的微博、微信朋友圈、豆瓣网、知乎等等。为了更好地理解和利用这些评论,针对社交媒体用户评论的情感分析已经成为当下的研究热点。这类情感分析可以应用到不同的场景,有助于各部门进行网络决策、金融预测、政策制定和舆情分析等等。比如,豆瓣用户可以根据其他用户对某一电影的影评,分析其所蕴含的情感极性,来判断是否选择观看该影片,为人们的日常生活带来便利。

目前,文本情感分析的主要方法是基于机器(深度)学习的有监督学习。这类方法需要有大量带情感标签的数据的支持,但在实际中这类数据的获取往往受到挑战。一方面,因为情感的标注需要制定相应的专家规则,并手动人工标注,在时间和人力财力上受到局限。另一方面,网络变化日新月异,网络信息爆炸式增长,有情感标注的数据很难直接获取,而一些没有情感标注的数据却很容易更新和获取。

为了解决情感标签不足的问题,相继提出了半监督学习和无监督学习。典型的无监督学习是基于情感词典的方法,但网络文化日新月异,词语更新速度极快,很难获取到合适的、实时更新的情感词库。另一类无监督学习是基于聚类思想的方法,但这种方法往往只能将不同情感的文本加以分类,但无法获取具体的情感类型。因此,基于半监督学习的文本情感分析方法是目前最值得研究的一类方法,本文据此提出了一种基于动态阈值和多分类器的情感分析方法,进一步提高情感分析的准确率。

发明内容

本发明所要解决的技术问题是:提供一种更加准确的文本情感分析方法,在部分已知情感的文本数据基础上训练一个合理的分类器,利用该分类器对测试集文本进行情感预测,试图使得到的预测准确率最高。为实现上述目的,本发明采取以下技术方案:

一种基于动态阈值和多分类器的半监督文本情感分析方法,包括下列步骤:

步骤1:采社交媒体用户线上评论数据;

步骤2:根据情感的不同,对其中部分数据进行情感标注并记为L,未标注情感的数据记为U;

步骤3:对数据进行分词预处理;

步骤4:用Word2vec工具将词转化为数值型向量,将每条数据用一个n*k的矩阵表示,其中n表示该数据由n个词组成,k表示每个词的维度;

步骤5:采用有放回的抽样方法对L进行抽样,该过程重复T次,相应得到T个抽样样本序列Lt和T个未抽中样本序列OOBt;

步骤6:选取一个抽样样本序列Lt,和无情感标注的数据,这里记为Ut;

步骤7:用Lt训练SVM分类器Ct,用Ct对Ut进行预测,将可靠度达到阈值的样本l加入Lt中,并从Ut中将其删去;

步骤8:更新阈值,重复步骤7),直到达到截至条件,得到最终的SVM分类器Ct;阈值更新方法为:动态变化且随迭代次数的增加,阈值逐渐减小;

步骤9:用OOBt计算分类器Ct的可靠度Pt;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810588300.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top