[发明专利]一种有机酸修饰的Si/TiO2 有效
申请号: | 201810668628.7 | 申请日: | 2018-06-26 |
公开(公告)号: | CN108923027B | 公开(公告)日: | 2022-02-01 |
发明(设计)人: | 汝强;张芃;闫弘麟 | 申请(专利权)人: | 华南师范大学 |
主分类号: | H01M4/36 | 分类号: | H01M4/36;H01M4/38;H01M4/62;H01M10/0525;B82Y30/00 |
代理公司: | 广州骏思知识产权代理有限公司 44425 | 代理人: | 潘雯瑛 |
地址: | 510006 广东省广州市番禺区*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 有机酸 修饰 si tio base sub | ||
本发明涉及一种有机酸修饰的Si/TiO2/rGO@C锂离子电池负极材料及其制备方法,该制备方法包括以下步骤:S1:将纳米二氧化钛与硅的粉末加入分散介质中,进行超声分散处理,然后进行球磨;S2:将氧化石墨烯的分散液加入步骤S1所得的混合物中,然后进行球磨;S3:将有机碳源加入步骤S2所得的混合物中,搅拌后进行球磨;S4:对步骤S3所得的混合物进行离心、干燥处理,得到Si/TiO2/GO/C复合物;S5:在惰性气氛中,以350~450℃对步骤S4所得的Si/TiO2/GO/C复合物进行煅烧,煅烧后得到所述负极材料。本发明还涉及所述负极材料在锂离子电池负极片中的应用。该制备方法具有操作简便、成本低、易于工业生产等优点,且得到的负极材料综合性能优异,具有较高的容量保持率和较稳定的充放电循环性能。
技术领域
本发明涉及锂离子电池技术领域,特别是涉及一种有机酸修饰的Si/TiO2/rGO@C锂离子电池负极材料及其制备方法与应用。
背景技术
随着智能手机、手提电脑、新能源汽车等的广泛普及,大容量锂离子电池因具有比能量高、高电压、自放电小、循环寿命长、无记忆效应和环境污染小等优点被广泛应用于电子设备,能源设备等相关领域,成为解决能源储存及转换问题中较好的一种选择。而负极材料作为锂离子电池组成的重要组成部分严重影响着电池的综合性能。当今已广泛应用的商业化负极材料为石墨负极材料,但其理论比容量仅为372mAh/g,且其倍率性能与典型的商业正极材料如LiMn2O4,LiCoO2和LiFePO4等相比较差,这些缺点严重阻碍了石墨负极材料在新能源汽车和新能源储存器中的应用。
硅基材料因其具有高达4200mAh/g的理论比容量成为人们关注的热点之一。尽管它具有近十一倍于商业石墨负极材料的理论比容量,但极快的容量衰减、极差的充放电循环性能和倍率性能严重制约了硅基材料高比容量特点的充分发挥,使其难于实现商业化。硅基材料极差的电化学性能主要是由于在充放电过程中,连续不断地脱嵌锂离子使得其产生巨大的体积胀(300%)和极片粉化失效,同时形成极不稳定的固体电解质界面膜。目前,较为常见的改进方法为,缩减硅材料的尺寸至纳米级,如纳米球,纳米管,纳米线等,或者是使用碳源包覆硅材料,利用碳包覆层缓减硅材料的体积膨胀效应。这两种方法虽能够一定程度的改进硅基材料的性能,但仍无法满足实际的要求。
因此,人们急需开发一种具有高比容量、超长循环、高倍率性能的负极材料。同时,传统实验多以材料合成和工艺设计为主,为避免传统手段中无目的地进行海量实验,分子设计与模拟技术可对材料的某些性能进行预测,找出一些普遍性的规律逐步确立改性的选择依据,大大缩短试验周期、节省实验成本。
发明内容
基于此,本发明的目的在于,提供一种有机酸修饰的Si/TiO2/rGO@C锂离子电池负极材料的制备方法,其具有操作工艺简便、合成成本低廉、易于工业生产等优点,而且得到的负极材料综合性能优异。
本发明采取的技术方案如下:
一种有机酸修饰的Si/TiO2/rGO@C锂离子电池负极材料的制备方法,包括以下步骤:
S1:将纳米二氧化钛与硅的粉末加入分散介质中,进行超声分散处理,然后进行球磨;
S2:将氧化石墨烯的分散液加入步骤S1所得的混合物中,然后进行球磨;
S3:将有机碳源加入步骤S2所得的混合物中,搅拌后进行球磨;
S4:对步骤S3所得的混合物进行离心、干燥处理,得到Si/TiO2/GO/C复合物;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南师范大学,未经华南师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810668628.7/2.html,转载请声明来源钻瓜专利网。
- 纳米TiO<sub>2</sub>复合水处理材料及其制备方法
- 具有TiO<sub>2</sub>致密层的光阳极的制备方法
- 一种TiO<sub>2</sub>纳米颗粒/TiO<sub>2</sub>纳米管阵列及其应用
- 基于TiO2的擦洗颗粒,以及制备和使用这样的基于TiO2的擦洗颗粒的方法
- 一种碳包覆的TiO<sub>2</sub>材料及其制备方法
- 一种应用于晶体硅太阳电池的Si/TiO<sub>x</sub>结构
- 应用TiO<sub>2</sub>光触媒载体净水装置及TiO<sub>2</sub>光触媒载体的制备方法
- 一种片状硅石/纳米TiO2复合材料及其制备方法
- TiO<base:Sub>2
- TiO