[发明专利]一种基于分数傅里叶调制率分析的LFM信号时延测量方法有效
申请号: | 201810685402.8 | 申请日: | 2018-06-28 |
公开(公告)号: | CN109031260B | 公开(公告)日: | 2022-04-26 |
发明(设计)人: | 方世良;黄舒夏;安良 | 申请(专利权)人: | 东南大学 |
主分类号: | G01S7/539 | 分类号: | G01S7/539 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 王安琪 |
地址: | 211189 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 分数 傅里叶 调制 分析 lfm 信号 测量方法 | ||
1.一种基于分数傅里叶调制率分析的LFM信号时延测量方法,其特征在于,包括如下步骤:
(1)发射信号为线型调频信号:
s[n]=cos(2πf0·n/fs+πk·(n/fs)2),n∈[0,T·fs]
其中,f0为信号起始频,k为信号的调制斜率,T为信号脉宽,fs为采样率;将接收信号r进行变阶数快速离散FrFT处理得到结果:Fpr,其中阶数p的搜索变化范围为[0,2],离散化后的时间坐标轴n转化为u轴:u=(n/fs-TWL/2)/S,n∈[0,TWL·fs],其中为单位化间隔,TWL为接收信号总时长;
(2)搜索出Fpr,p∈[0,2]中最大值所对应的阶数为最优阶数:
(3)在离散归一化坐标系中,提取最大值所对应的u轴坐标:
p∈[0,2]
则信号估计时延为:
其中,φ*为最优旋转角;
(4)构造还原单位幅度的接收信号:
其中表示向上取整,则其估计幅度为:
(5)得到线性调频信号的多普勒系数时延及幅度三个接收信号参数的测量值。
2.如权利要求1所述的基于分数傅里叶调制率分析的LFM信号时延测量方法,其特征在于,步骤(3)中,最优旋转角为φ*=πp*/2,则调制斜率估计值为:多普勒系数估计值为
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810685402.8/1.html,转载请声明来源钻瓜专利网。
- 上一篇:超声波探头
- 下一篇:一种时差估计方法及装置