[发明专利]一种图像分类模型的处理方法、装置及存储介质有效
申请号: | 201810697524.9 | 申请日: | 2018-06-29 |
公开(公告)号: | CN108921216B | 公开(公告)日: | 2023-01-03 |
发明(设计)人: | 许明微;李琳;吴耀华 | 申请(专利权)人: | 咪咕文化科技有限公司;中国移动通信集团有限公司 |
主分类号: | G06V10/764 | 分类号: | G06V10/764 |
代理公司: | 北京派特恩知识产权代理有限公司 11270 | 代理人: | 姚文娴;张颖玲 |
地址: | 100032 北京市西城区德*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 图像 分类 模型 处理 方法 装置 存储 介质 | ||
本发明公开了一种图像分类模型的处理方法,所述方法包括:分别对原始空间中的源域图像样本集和目标域图像样本集进行降维,对应得到源域子空间和目标域子空间;将所述源域子空间和所述目标域子空间中的样本对齐,确定源域与目标域之间的分布差异化满足预设最小差异条件时的降维后的源域图像样本;对所述降维后的源域图像样本中各类别样本进行加权处理,得到对齐加权后的源域图像样本;将所述对齐加权后的源域图像样本以及对应的标签,应用于对所述目标域中新图像样本进行分类的模型。本发明还同时公开了一种图像分类模型的处理装置、以及存储介质。
技术领域
本发明涉及计算机领域中的图像识别技术,尤其涉及一种图像分类模型的处理方法、装置及存储介质。
背景技术
目前,在常规机器学习中有一个重要假设,即源域的样本数据(也称为训练数据)和目标域的样本数据(也称为测试数据)具有相同的分布。然而在很多实际应用中,这一假设往往是不成立的。因此,应用传统的图像识别方法训练出的图像分类模型的识别效果远不能达到人们的期望。
实际上,当源域的样本数据与目标域的样本数据不能满足独立同分布的条件时,可以采用领域自适应方法如非监督领域自适应方法对图像样本进行分类。相关技术中,常用的领域自适应方法包括测地流方法和子空间对齐(SA,Subspace Alignment)方法。
然而,利用测地流方法对图像样本进行分类时,存在以下缺陷:1)需要计算大量的中间子空间,导致算法复杂度很高;2)最终得到的最优解是局部最优解,而不是全局最优解。相比于测地流方法,SA方法虽然在样本识别准确率方面有所提高,但仍存在如下不足:该方法假设源域中所有图像样本的地位相同,即对源域中所有图像样本进行同等对待,然而在实际情景中,经常会出现源域图像样本与目标域图像样本的类别不平衡的现象。如图1所示,图1(a)为源域图像样本中的各类别图像的示意图,图1(b)为目标域图像样本中的各类别图像的示意图,通过对比图1(a)和图1(b)可见,源域和目标域中每类样本对应的数目,比如源域图像样本中的三角形个数与目标域图像样本中的三角形个数不均衡,从而导致图像识别准确度降低,使得模型训练学习的效果无法达到预期结果。
因此,对于如何克服由于源域图像样本的类别与目标域图像样本的类别不平衡而影响图像分类模型准确度的问题,相关技术尚未提出有效解决方案。
发明内容
有鉴于此,本发明实施例期望提供一种图像分类模型的处理方法、装置及存储介质,至少用以解决相关技术中由于源域图像样本的类别与目标域图像样本的类别不平衡而降低图像分类模型准确度的问题。
为达到上述目的,本发明实施例的技术方案是这样实现的:
第一方面,本发明实施例提供一种图像分类模型的处理方法,所述方法包括:
分别对原始空间中的源域图像样本集和目标域图像样本集进行降维,对应得到源域子空间和目标域子空间;
将所述源域子空间和所述目标域子空间中的样本对齐,确定源域与目标域之间的分布差异化满足预设最小差异条件时的降维后的源域图像样本;
对所述降维后的源域图像样本中各类别样本进行加权处理,得到对齐加权后的源域图像样本;
将所述对齐加权后的源域图像样本以及对应的标签,应用于对所述目标域中新图像样本进行分类的模型。
第二方面,本发明实施例还提供一种图像分类模型的处理装置,所述装置包括:降维模块、对齐模块、加权模块和应用模块;其中,
所述降维模块,用于分别对原始空间中的源域图像样本集和目标域图像样本集进行降维,对应得到源域子空间和目标域子空间;
所述对齐模块,用于将所述源域子空间和所述目标域子空间中的样本对齐,确定源域与目标域之间的分布差异化满足预设最小差异条件时的降维后的源域图像样本;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于咪咕文化科技有限公司;中国移动通信集团有限公司,未经咪咕文化科技有限公司;中国移动通信集团有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810697524.9/2.html,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序