[发明专利]基于低秩核心矩阵的改进稳健张量主成分分析的背景建模方法有效
申请号: | 201810706769.3 | 申请日: | 2018-07-02 |
公开(公告)号: | CN108510013B | 公开(公告)日: | 2020-05-12 |
发明(设计)人: | 刘翼鹏;冯兰兰;陈龙喜;曾思行;朱策 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 电子科技大学专利中心 51203 | 代理人: | 周刘英 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 核心 矩阵 改进 稳健 张量 成分 分析 背景 建模 方法 | ||
本发明公开了一种基于低秩核心矩阵的改进稳健张量主成分分析方法,属于数据处理技术领域。本发利用低秩核心矩阵近似来改进现有的稳健主成分分析技术,首先对待处理的张量进行张量奇异值分解,然后利用分解得到的f‑对角张量的低秩结构,本发明定义了一个改进的张量核范数,与已有的张量核范数相比,其增加了一项由f‑对角张量构造的核心矩阵的核范数。即本发明中的张量核范数项可以在第一和第二模式中提取低秩张量成分,而另一项则使用核心矩阵的核范数来处理第三模式下的低秩张量成分。本发明可用于图像处理,为图像处理提供了一种高效的稳健张量主成分分析方法。
技术领域
本发明涉及数据处理领域,尤其涉及一种改进的张量低秩分解方法。
背景技术
张量是多维数据,它是向量和矩阵数据的高阶泛化。基于张量数据的信号处理在广泛的应用中发挥了重要作用,如推荐系统,数据挖掘,图像/视频去噪和修复等。然而,许多数据处理方法仅仅针对二维数据开发。将这些有效的方法扩展到张量领域已变得越来越重要。
稳健主成分分析(RPCA)是经典主成分分析(PCA)的衍生,其已经被广泛应用于许多数据处理问题。在RPCA方法中,通过将一个矩阵X分解成一个低秩成分L和一个稀疏成分E,L和E可以很高概率地通过解决以下凸问题恢复出来:
minL,E‖L‖*+λ‖E‖1,s.t.X=L+E (1)
其中‖L‖*表示矩阵核范数,定义为矩阵L的奇异值之和;‖E‖1表示矩阵E的l1范数,定义为矩阵E的所有元素的绝对值之和。
RPCA已被应用于图像处理领域,包括背景建模、批处理图像对齐方式、人脸去阴影等。它仅仅能处理矩阵数据,而一些现实世界的图像数据是以多维形式存在的,如RGB彩色图像、视频、高光谱图像和磁共振图像等。张量数据的矩阵化并不是充分利用多维数据的结构信息。为解决这一问题,稳健张量主成分分析(RTPCA)方法被提出。
给定一个张量其中表示实数域,上标为维度信息,即N1,N2,N3分别表示张量的第一,第二和第三维度,张量可以被分解为低秩成分和稀疏成分,可以表示如下:
其中表示低秩成分,ε0表示稀疏成分。
张量秩是RTPCA的重要特征之一,张量分解的不同框架有不同的张量秩的定义。例如,典范因子分解(CPD)将一个张量分解成若干个秩为1的张量因子的总和,而因子的最小数量被称为CP秩。CPD具有不适定性,并且存在计算问题。在Tucker分解中,一个张量被分解成一个核心张量在每个模式下乘以一个因子矩阵。Tucker秩由因子矩阵的秩组成。一个张量的管秩被定义为在张量奇异值分解(t-SVD)中,其f-对角张量(张量的每个正面切片都是一个对角矩阵)的非零奇异的管纤维的数目。
t-SVD框架不同于传统的张量分解的代数框架,它以循环代数和傅里叶变换(FT)为基础。这个分解的结构类似于矩阵数据中的奇异值分解(SVD)。图1展示了t-SVD分解示意图,给定一个张量其t-SVD分解为:首先对待分解的张量沿着第三个维度做快速傅里叶变换,再分别对得到的张量的各个正面切片进行矩阵的SVD分解,每个正面切片的SVD分解都将得到两个酉矩阵和一个对角矩阵,基于所有正面切片的分解结果,得到傅里叶域的张量奇异值分解结果和其中为傅里叶域的酉矩阵,为傅里叶域的对角矩阵(f-对角张量);最后,分别对和进行反傅里叶变换,得到张量的张量奇异值分解结果即其中和分别为大小N1×N1×N3和N2×N2×N3的正交张量,是一个大小为N1×N2×N3的f-对角张量,称为核心张量。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810706769.3/2.html,转载请声明来源钻瓜专利网。