[发明专利]一种自适应随机共振的地震波特征提取方法在审

专利信息
申请号: 201810738071.X 申请日: 2018-07-02
公开(公告)号: CN108549105A 公开(公告)日: 2018-09-18
发明(设计)人: 王海燕;马石磊;董海涛;申晓红;锁健 申请(专利权)人: 西北工业大学
主分类号: G01V1/30 分类号: G01V1/30
代理公司: 西北工业大学专利中心 61204 代理人: 顾潮琪
地址: 710072 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 目标特征 随机共振 特征提取 地震波 信噪比 自适应 噪声 双稳态随机共振系统 测度 最大似然估计 二阶非线性 输出信噪比 改变信号 频率匹配 特征信号 线谱频率 信号能量 信号频率 噪声匹配 最优匹配 线谱 淹没 输出 优化
【说明书】:

发明提供了一种自适应随机共振的地震波特征提取方法,采用最大似然估计估计噪声强度,建立二阶非线性双稳态随机共振系统,通过优化输出信噪比增益测度以及同步克莱姆逃逸率实现噪声匹配与频率匹配;按照设定的步长改变信号频率,选取信噪比最大值作为最优匹配值,并提取其对应的信号频率即为目标特征线谱频率。本发明能够大幅提升目标特征线谱处的信号能量及局部信噪比,对完全淹没的噪声中的特征信号亦能得到明显的增强输出。

技术领域

本发明涉及水下地震波信号提取和微弱信号检测领域。

背景技术

随着水下大型航行器消磁降噪等措施的不断完善,其本身的自防护能力不断提高,尤其是安静型水下航行器无人潜航器等水下移动目标,其声学特性被不断削弱,传统声学探测方法难度增大。水中航行的舰艇是很大的能量载体,可以通过船体对水体的扰动、船体的固有频率振动、船上的机械振动辐射噪声、螺旋桨噪声以及水动力噪声等方式将能量释放到水体中向外传播。理论和实验已证明运动舰艇不平衡旋转部件、螺旋桨周期击水以及叶片共振会产生较高强度和稳定度的甚低频线谱特征,其中一部分能量被宽带空化噪声调制后向外辐射,另一部分能量经由水体耦合至海底,引起海底岩土层振动,进而产生舰艇地震波,可直接关联目标发动机、螺旋桨等物理特征。其作为水下大型航行器探测信号,携带水下航行目标的关键特征,可以不受水文条件的影响而通过海底传播,具有衰减慢、作用距离远且很难被抑制的特点。因此利用甚低频地震波信号进行水下目标探测,是实现对水下大型航行器远程探测的有效技术手段,是水下被动探测系统远距离感知目标的重点发展方向之一,在复杂的强海洋环境噪声中提取地震波信号特征显得尤为重要。

近年来,伴随着非线性动力学和统计物理理论而突飞猛进,基于非线性随机共振的微弱周期信号检测理论方法得到快速发展,目前已在众多科学领域取得了丰硕的成果,其对于微弱周期信号的增强作用为低信噪比条件下的水中目标特征线谱检测与提取方法提供了一条新的途径。而随机共振技术则利用了噪声来增强目标信号,以提高微弱信号的检测性能。具体来说,随机共振技术通过建立合适的系统,将部分噪声能量转化为信号能量,能够大幅度提高输出信噪比。

传统水中目标线谱特征检测与提取方法,如滤波、相关检测、时频分析等,能够处理一定信噪比的噪声,但是在强背景噪声干扰下其提取性能难度很大,无法在强背景噪声中提取微弱信号。

发明内容

为了克服现有技术的不足,本发明提供一种自适应随机共振增强的微弱特征提取方法,通过建立自适应匹配随机共振模型,以最大局部信噪比为表征测度,在复杂的强海洋环境背景噪声中提取微弱的地震波特征信号。

本发明解决其技术问题所采用的技术方案包括以下步骤:

步骤1,采用最大似然估计估计噪声强度,计算噪声方差其中,N为信号点数,T(x)为检验统计量;

步骤2,建立二阶非线性双稳态随机共振系统其中x为系统输出,γ为二阶系统阻尼参数,表示接收到的特征线谱信号,A0为输入信号幅值,f0为输入信号频率,为初始相位;n(t)为噪声强度为D的背景噪声;非线性双稳态势函数a>0,b>0,a、b为双稳态随机共振系统的势垒参数,系统势函数有两个稳态点在处,被在零点处的势垒ΔV=a2/4b分开;

步骤3,建立参数匹配的随机共振系统,通过优化输出信噪比增益测度以及同步克莱姆逃逸率实现噪声匹配与频率匹配;所述的匹配参数其中e为自然对数,信号频率f0通过设定信号频率搜索范围[fstart,fend]以及搜索步长fstep选取,D为噪声强度;

为了尽可能覆盖海底地震波的所有频段,信号频率f0在海底地震波探测范围10Hz~100Hz中以搜索步长1Hz进行选取。

步骤4,将二阶非线性双稳态随机共振系统的二阶方程化简为两个一阶方程,然后用四阶龙戈库塔算法求解方程组,

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810738071.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top