[发明专利]基于柯西模糊函数的红外与弱可见光图像融合方法有效
申请号: | 201810782395.3 | 申请日: | 2018-07-17 |
公开(公告)号: | CN109035189B | 公开(公告)日: | 2021-07-23 |
发明(设计)人: | 江泽涛;何玉婷;江婧;胡硕 | 申请(专利权)人: | 桂林电子科技大学 |
主分类号: | G06T5/50 | 分类号: | G06T5/50;G06T5/00 |
代理公司: | 桂林市持衡专利商标事务所有限公司 45107 | 代理人: | 陈跃琳 |
地址: | 541004 广西*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 模糊 函数 红外 可见光 图像 融合 方法 | ||
本发明公开一种基于柯西模糊函数的红外与弱可见光图像融合方法,首先利用改进的引导滤波来自适应增强提高弱可见光图像暗区域的可视性,然后利用NSST对红外和增强后的弱可见光图像进行多尺度分解得到红外图像和增强后的弱可见光图像的低频分量与高频分量;接着,利用直觉模糊集构建柯西隶属函数对红外图像和增强后的弱可见光图像的低频分量进行融合,并利用自适应的双通道脉冲发放皮层模型对红外图像和增强后的弱可见光图像的高频分量进行融合;最后利用非下采样剪切波逆变换对融合后的低频分量和高频分量进行重构,得到最终融合图像。本发明能够更加有效地提取图像的细节信息,并获得更好的融合效果。
技术领域
本发明涉及图像处理技术领域,具体涉及一种基于柯西模糊函数的红外与弱可见光图像融合方法。
背景技术
基于小波变换的多尺度几何分析的方法对图像融合有着一定的贡献,但是由于小波框架只能构造水平、垂直和对角三个方向元素,因此它们自身仍存在着一些缺点。
在此理论基础上,K.Guo和G.Easley等人利用合成小波理论通过把几何和多尺度分析结合起来提出了剪切波(Shearlet)理论。虽然合成小波通过将小波中一维尺度变换因子变换成膨胀因子和剪切因子得到二维空间,通过变换得到的合成小波系统就可以构造任意方向的基元素,但是Shearlet变换理论不具有平移不变性。
NSST(Non-subsampled Shearlet Transform,非下采样剪切波变换NSST)理论中让标准的剪切波滤波器从伪极向坐标系统映射到Cartesian坐标系统,通过快速逆傅里叶变换FFT,进行二维卷积完成,从而避免了下采样操作,使其具有平移不变性,克服了伪Gibbs现象。虽然具有更灵活的结构、更高的计算效率和更理想的图像融合效果,但是实时性仍然达不到某些特殊需求的应用场景的要求。
发明内容
本发明针对低光照的情况下因可见光图像可视性较差所导致的融合图像对比度低和背景细节保留不充分等问题,提供一种基于柯西模糊函数的红外与弱可见光图像融合方法。
为解决上述问题,本发明是通过以下技术方案实现的:
基于柯西模糊函数的红外与弱可见光图像融合方法,具体包括步骤如下:
步骤1、利用引导滤波对弱可见光图像进行分解,得到图像的基础层和细节层;再利用比例因子进行动态范围压缩和利用恢复因子来恢复整体对比度,得到增强后的弱可见光图像;
步骤2、采用非下采样剪切波变换分别对红外图像和增强后的弱可见光图像进行多尺度分解,分别得到红外图像和增强后的弱可见光图像的低频分量与高频分量;
步骤3、利用直觉模糊集构建柯西隶属函数对红外图像和增强后的弱可见光图像的低频分量进行融合,得到融合之后的低频分量;
步骤4、利用自适应的双通道脉冲发放皮层模型对红外图像和增强后的弱可见光图像的高频分量进行融合,得到融合之后的高频分量;
步骤5、对经过步骤3融合得到的低频分量和经过步骤4融合得到的高频分量,利用非下采样剪切波逆变换进行重构,得到最终融合图像。
上述步骤1中,增强后的弱可见光图像I为:
式中,β为比例因子,γ为恢复因子,T为目标基础对比度,为基础层,为细节层。
上述步骤3的具体步骤为:
步骤3.1、利用柯西模糊函数来构建红外图像的隶属函数和非隶属函数;
步骤3.2、根据直觉模糊集概念,得出犹豫度;其中犹豫度π(i,j)为:
π(i,j)=1-XIR(i,j)-YIR(i,j)
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810782395.3/2.html,转载请声明来源钻瓜专利网。