[发明专利]一种基于显著度匹配的画风迁移方法有效
申请号: | 201810784714.4 | 申请日: | 2018-07-17 |
公开(公告)号: | CN108961350B | 公开(公告)日: | 2023-09-19 |
发明(设计)人: | 孙安澜;马伟;祝玮 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06T3/00 | 分类号: | G06T3/00;G06T11/40;G06V10/82;G06V10/46;G06V10/74;G06N3/0455;G06N3/0464;G06N3/0442;G06N3/048;G06N3/08 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 刘萍 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 显著 匹配 迁移 方法 | ||
1.一种基于显著度匹配的画风迁移方法,其特征在于,包括以下模块:
模块一、特征抽取模块:给定一幅输入图像,通过特征抽取模块得到特征矩阵;
模块二、子画风迁移模块:对特征矩阵表达的内容图进行处理使其具备不同的子画风,并解码生成带有不同子画风的多幅内容图;其中,子画风总数量M和子画风的显著度排序事先由用户自由指定;
子画风迁移模块包括两个部分,迁移子网和子画风解码器;迁移子网接收特征抽取模块所提取出来的特征,对特征进行卷积操作使其依据每个子画风进行风格化;只需要在迁移子网中并行M个参数不共享的卷积层分支完成对M个子画风的风格迁移;
子画风解码器为K层的尺度调整卷积网络,接收子画风风格化后的特征,并将其解码恢复到原始图片大小,得到M张带子画风风格的内容图;引入尺度调整卷积来代替传统解码器中的反卷积;其中,K=3;
模块三、基于显著度的区域分解模块:该模块以特征矩阵表达的内容图为输入,将其依据注意力机制按照重要性程度进行内容分解,并解码生成N张与内容图尺寸一致、显著度由高到低排序的区域分布图,每张图中像素取值表示该像素属于当前显著层级的概率;
基于显著度的区域分解模块由两个部分组成,包括区域分解卷积LSTM子网和分区图解码器;
区域分解卷积LSTM子网基于视觉注意力机制,将特征提取模块输出的特征转换为N个显著度层级的、与输入特征同宽高的单通道区域分布矩阵,每个矩阵上每个元素的值表示该元素属于该显著度层级的概率;
构建的区域分解卷积LSTM网络包含N个循环的卷积LSTM结构,第i个循环得到第i个显著度层级的区域概率图,具体如下:(1)LSTM的所有全连接结构设计成卷积的形式;
(2)在LSTM特征传递过程中引入前序循环已计算结果,即每个矩阵元素在前序显著度阶层上的概率值,用Amapi,i=1,...,t-1,表示第i个循环获得的与输入特征同等尺寸的单通道区域分布矩阵;Amapi其中每个元素取值范围为[0,1],表示每个元素在第i个显著度层级上的概率;设置当前t时刻的输入为累加矩阵,即AMapsum=∑i∈SAMapi,与特征提取模块输出的特征矩阵做哈达马积操作,即Mask操作;其中,S为集合{1,…,t-1}的子集;
解码器为K层的尺度调整卷积网络,分别将N个区域矩阵解码为与内容图同等尺寸的N张概率图,表示第N个显著度阶层上每个像素所属概率;解码后的概率图在画风图像合成模块中,将作为对应显著度的子画风风格后的内容图的融合权重;其中,K=3;
模块四、画风图像合成模块:对子画风内容图和内容区域分布图按显著度的一致性进行匹配,以区域分布图的像素值为权值,加权对应子画风图像的相应像素;所有加权后的子画风内容图加和生成最终的画风迁移图;
画风图像合成模块将N张带子画风风格的内容图融合生成一张带画风图风格的内容图;在M=N情况下,子画风图与概率权值图一一对应;在M与N不相等情况下,做线性对应,即第m张子画风图取第n张权值图,n=mN/M;在M等于N情况下,如多张子画风对应同一权值图,可对该权值图按照像素值均分的方式做成多张权值图;如多张权值图对应一张子画风图,可对权值图像通过像素值相加叠加成一张权值图;
总之,使得每张子画风图仅对应一张权值图;用表示第m张子画风内容图该像素位置处的值,用n(m)表示该画风图对应的显著度图编号,为第n(m)张概率度图中第i个像素位置处的值,合成图中第i个像素的值ti为:
2.根据权利要求1所述的方法,其特征在于:
特征抽取模块由编码器和残差子网组成;编码器通过一个L层卷积神经网络实现多尺度特征提取和非线性映射计算,获取语义层次的特征表达,随后通过一个J层残差模块进行进一步特征凝练;其中,L=3,J=5。
3.根据权利要求1所述的方法,其特征在于:
训练阶段对所提出架构进行分支训练,使每个分支向目标作用优化。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810784714.4/1.html,转载请声明来源钻瓜专利网。