[发明专利]基于模型的预测方法和装置有效

专利信息
申请号: 201810785420.3 申请日: 2018-07-17
公开(公告)号: CN109033854B 公开(公告)日: 2020-06-09
发明(设计)人: 林文珍;殷山;刘正 申请(专利权)人: 阿里巴巴集团控股有限公司
主分类号: G06F21/60 分类号: G06F21/60
代理公司: 北京亿腾知识产权代理事务所(普通合伙) 11309 代理人: 张静娟;周良玉
地址: 英属开曼群岛大开*** 国省代码: 暂无信息
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 模型 预测 方法 装置
【说明书】:

本说明书实施例提供基于模型的预测方法和装置,一种所述方法在数据需求方执行,所述数据需求方包括预先训练好的计算模型,所述方法包括:通过对所述计算模型的至少一个参数进行加密,生成加密模型;将所述加密模型提供给数据提供方,其中,所述数据提供方存储有第一数据;向所述数据提供方发送关于所述第一数据和所述加密模型的计算请求;从所述数据提供方接收与所述计算请求对应的计算结果;以及基于所述计算结果,获取所述计算模型的明文预测结果。

技术领域

本说明书实施例涉及数据处理技术领域,更具体地,涉及基于模型的预测方法和装置。

背景技术

在数据分析、数据挖掘、经济预测等领域,经常使用模型对大数据进行处理,以分析、发现潜在的数据价值。在实际应用场景中,为了更准确地刻画目标群体或变量,通常需要使用测试数据进行训练,得到可以准确描述目标群体或变量的特征。然而不同的商户拥有的数据类型或特征往往是不健全的,通过单一的数据难以准确地刻画目标。为了得到更好的模型预测结果,通常商户间会选择数据合作的方式,结合不同的数据或特征标签共同完成模型计算,以求共赢。在多方数据合作过程中,又涉及数据安全和模型安全等问题。一方面,数据提供方不想输出自己的价值数据给数据需求方,泄漏私有数据;另一方面,模型中包含的特征标签等信息也是商户的私有数据,具有重要的商业价值,担忧数据合作过程中的模型安全问题,导致数据合作受阻。

针对上述问题,传统的解决方案包括,将数据和模型放置在一个可信第三方(如共创实验室等),进行模型预测。对可信第三方的数据出入进行严格控制,保证信息安全。

因此,需要一种更有效的基于模型的预测方案。

发明内容

本说明书实施例旨在提供一种更有效的基于模型的预测方案,以解决现有技术中的不足。

为实现上述目的,本说明书一个方面提供一种基于模型的预测方法,所述方法在数据需求方执行,所述数据需求方包括预先训练好的计算模型,所述方法包括:通过对所述计算模型的至少一个参数进行加密,生成加密模型;将所述加密模型提供给数据提供方,其中,所述数据提供方存储有第一数据;向所述数据提供方发送关于所述第一数据和所述加密模型的计算请求;从所述数据提供方接收与所述计算请求对应的计算结果;以及基于所述计算结果,获取所述计算模型的明文预测结果。

在一个实施例中,在所述基于模型的预测方法中,所述数据需求方安装有数据需求方计算引擎,其中,通过对所述计算模型的至少一个参数进行加密,生成加密模型包括,通过使用所述数据需求方计算引擎对所述计算模型的至少一个参数进行加密,生成加密模型。

在一个实施例中,在所述基于模型的预测方法中,所述数据提供方安装有数据提供方计算引擎,其中,从所述数据提供方接收与所述计算请求对应的计算结果包括,通过所述数据需求方计算引擎从所述数据提供方计算引擎接收所述计算结果。

在一个实施例中,在所述基于模型的预测方法中,对所述计算模型的至少一个参数进行加密包括,通过以下一种加密方法对所述至少一个参数进行加密:同态加密方法、混淆电路方法以及差分隐私方法。

在一个实施例中,在所述基于模型的预测方法中,所述计算模型为逻辑回归模型或线性回归模型,所述加密方法为同态加密方法,所述计算结果为同态密文结果,其中,基于所述计算结果,获取所述计算模型的明文预测结果包括:使用与所述计算模型对应的私钥对所述同态密文结果进行解密,以获取所述计算模型的明文预测结果,其中,所述私钥在本地预先生成。

在一个实施例中,在所述基于模型的预测方法中,所述计算模型为GBDT模型,所述加密方法为混淆电路方法。

在一个实施例中,在所述基于模型的预测方法中,所述计算模型为评分卡模型,所述加密方法为差分隐私方法。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于阿里巴巴集团控股有限公司,未经阿里巴巴集团控股有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810785420.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top