[发明专利]基于高斯混合和自回归滑动平均模型的黑烟车识别方法有效

专利信息
申请号: 201810789111.3 申请日: 2018-07-18
公开(公告)号: CN109190455B 公开(公告)日: 2021-08-13
发明(设计)人: 路小波;陶焕杰 申请(专利权)人: 东南大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/46;G06K9/62
代理公司: 南京众联专利代理有限公司 32206 代理人: 蒋昱
地址: 210096 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 混合 回归 滑动 平均 模型 黑烟 识别 方法
【权利要求书】:

1.基于高斯混合和自回归滑动平均模型的黑烟车识别方法,具体步骤如下,其特征在于:

(1)利用高斯混合模型从道路监控视频中检测车辆运动目标;

步骤(1)中的利用高斯混合模型从道路监控视频中检测车辆运动目标包括如下步骤:

(11)将每一帧图像转化为灰度图像,并均分为3*3像素的小块,对每个像素块建立高斯模型,以提高背景建模速度和稳定性,降低噪声的干扰;

(12)模型初始化,以某帧图像一个像素块M为例,该像素块的初始模型利用前N帧序列图像的像素块序列建立,记作{x1,x2,...,xN},取像素块的灰度平均值μ0和方差初始化第1个高斯分布的均值和方差,即

其中,I(x,y,k)表示该像素块在第k帧图像在位置(x,y)处的像素值;

(13)以第N+1帧为例来说明背景模型的更新方法,

若像素块的灰度值xN+1满足|xN+1i,N|≤2.5σi,N,则该像素块与对应的K个高斯分布匹配,参数更新如下,

其中,β和ρ分别是高斯分布均值和方差的学习率,表示高斯概率密度函数,θ和γ为固定值,用于调整学习率的取值范围,xN+1为第N+1帧像素块的灰度平均值,μi,N和σi,N2为第N+1帧,第i个高斯模型的均值和方差;

若该像素块的灰度值xN+1与对应的K个高斯分布不匹配,则参数μi,N和σi,N2保持不变,需要以xN+1为均值,较大方差和较小权重建立一个新的高斯分布,取代原有K个高斯分布中权重最小的一个,同时,更新K个高斯分布的权重ωi,N,

ωi,N+1=(1-α)ωi,N+αMi,N+1,i=1,2,...,K

其中,α是学习率,对于参数Mi,N+1,当xN+1与第i个高斯分布不匹配时,Mi,N+1=1,否则,Mi,N+1=0;

(14)背景估计,按照的值由大到小,对像素块M的K个高斯分布排序,取前B个高斯分布作为背景模型,取后K-B个高斯分布作为前景模型,

其中,T是阈值,决定了背景分布个数,

判断像素块M是否属于运动目标,当M的灰度值xN+1与前B个高斯分布中某个匹配时,认为M为背景像素;否则M为目标像素;

所有目标像素组成的区域即为前景目标区域,为降低误报,需确定关键区域,以前景目标的包围盒的底边为关键区域的底边,该区域的宽等于车辆目标的宽的0.8倍,高为60像素,归一化该关键区域为80*120像素,记作Inorm

(2)提取车辆关键区域的三种特征,包括Haar-like特征,共生矩阵梯度方向直方图特征和局部二值模式傅里叶直方图特征;

步骤(2)中的Haar-like特征的计算包括如下步骤:

(21)Haar-like特征是计算机视觉领域一种常用的特征描述算子,其特征值是一个小区域内的黑色像素灰度值之和减去白色像素灰度值之和,采用基于块特征的方式替代基于像素的方式可以降低计算成本,特征选择主要边缘特征,线特征,点特征即中心环绕特征和对角特征;

(22)Haar-like特征由2-3个矩形块组成,为了提高计算速度,采用积分图的方法快速计算出矩形内所有灰度的和;

(23)为降低特征维数,使用PCA算法进行特征选择和降维,得到降维后的Haar-like特征向量,记作FHaar-like

步骤(2)中的共生矩阵梯度方向直方图特征的计算包括如下步骤:

(24)分别计算归一化关键区域Inorm在位置(x,y)处梯度的幅度mag(x,y)和方向ori(x,y),即

其中,Inorm(x,y)表示归一化关键区域Inorm在位置(x,y)处的像素值;

(25)将关键区域按照宽高比均分为m×n个小块,小块是无重叠区域的;

(26)选定一种偏移方式对每个小块进行扫描,生成一个共生矩阵,偏移方式是指点对之间的相对位置,共31种,一种偏移方式对应一个共生矩阵,

将每个像素点的梯度方向进行成对的组合,同时将原来的梯度方向划分为8个,范围从0度到360度,即每45度为一个bin,由于每两个像素点组成一个组合,所以共生矩阵的大小为8*8=64,因此,一种偏移方式得到一个m*n*64的列向量;

(27)变换一种偏移关系在整幅图像上扫描,直到所有偏移方式都扫描一次,这样将会生成31*64*m*n的列向量,也就是最终的共生矩阵梯度方向直方图特征,记作FCoHOG

步骤(2)中的局部二值模式傅里叶直方图特征的计算包括如下步骤:

(28)利用下式计算规范型局部二值模式,

其中,P表示局部区域中邻域内像素的数量,R表示圆形邻域的半径,U(LBPP,R)表示领域像素个数为P,半径为R的图像区域的中心像素的规范型局部二值模式数值,gc区域的中心像素值,gp,p=1,2,...,P表示邻域上第p个像素点的像素值;

计算规范型局部二值模式的直方图特征;

(29)对直方图进行离散傅里叶变换,即

其中,P为近邻像素点的个数,Up(n,r)为某一规范化模式,hI(Up(n,r))为图像I中存在Up(n,r)规范化模式的个数,H(n,u)表示傅里叶变换后的直方图;

(210)利用下式得到局部二值模式傅里叶直方图特征,

其中,表示H(n,u)的复数共轭,FLBP-HF表示局部二值模式傅里叶直方图特征;

(3)利用自回归滑动平均模型对每种特征的连续多帧进行建模,得到三个不同模型;

步骤(3)中的利用自回归滑动平均模型对每种特征的连续多帧进行建模包括如下步骤:

(31)自回归滑动平均模型适用于客观世界大部分的时间序列的分析,且未知参数少,特性优化逼近程度较好,该模型认为序列当前值是现在和过去的误差以及先前的序列值的线性组合,其形式为,

ξt~WGN(0,σ2)

其中,p表示自回归阶数,q表示滑动平均阶数,均表示自回归系数,θj均表示滑动平均系数,ξt表示随机干扰值,ξt~WGN(0,σ2)表示ξt为均值为0,方差为σ2的正态白噪声过程,Yi,i=1,2,...,t表示时刻i的序列值;

(32)引入概率描述策略,变换上述模型公式为

(33)建立最小二乘问题,采用最基本的最速下降法估计模型参数,

对于同一关键区域,特征含有FHaar-like,FCoHOG和FLBP-HF三类,采用序列分析建立时间序列特征,因此可以得到三种不同的自回归滑动平均模型;

(4)对于新的车辆目标,将三个模型分别用于车辆关键区域提取到的三种特征的分类,结合不同特征的分类结果和连续多帧的综合分析,对当前视频段是否有黑烟车做出判断。

2.根据权利要求1所述的基于高斯混合和自回归滑动平均模型的黑烟车识别方法,其特征在于:步骤(4)中的识别黑烟车视频片段包括如下步骤:

(41)对于新的车辆目标,将三个模型分别用于车辆关键区域提取到的三种特征的分类,选取概率最大的模型的识别结果作为该关键区域的识别结果,如果当前帧有一个关键区域被识别为黑烟区域,则当前帧被认定为黑烟帧;

(42)综合多帧的分析,如果在连续100帧内有超过δ帧被识别为黑烟帧,则认定当前视频段内含有黑烟车,参数δ为用户设置的调节检出率和漏报率的系数。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810789111.3/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top