[发明专利]一种基于智能手表的握笔姿势检测和汉字笔顺识别方法有效
申请号: | 201810816149.5 | 申请日: | 2018-07-24 |
公开(公告)号: | CN109002803B | 公开(公告)日: | 2021-09-24 |
发明(设计)人: | 张健;毕红亮;陈艳姣;魏志航;赵梓存 | 申请(专利权)人: | 武汉大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00 |
代理公司: | 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 | 代理人: | 魏波 |
地址: | 430072 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 智能 手表 姿势 检测 汉字 笔顺 识别 方法 | ||
1.一种基于智能手表的握笔姿势检测和汉字笔顺识别方法,其特征在于,包括以下步骤:
步骤1:构建握笔姿势检测模型和笔顺识别模型;所述握笔姿势检测模型,用于检测九种不同的握笔姿势,包括一种正确的握笔姿势和8种错误的握笔姿势;所述8种错误的握笔姿势包括横搭型、埋头型、扭曲型、扭转型、直线型、错位型、睡觉型和拳头型;所述笔顺识别模型,用于识别用户书写的笔顺,并判断笔顺是否正确;
所述构建握笔姿势检测模型,通过提取汉字中任意一个横笔画和任意一个竖笔画这两个基本笔画,实现书写任何汉字时的握笔姿势检测;首先通过智能手表收集写字数据,然后进行信号检测,并通过汉字笔顺模型中构建的笔画分类器识别并提取该汉字中的任意一个横笔画和任意一个竖笔画,将信号进行合并后,提取该信号特征,然后通过机器学习的方法进行分类建模,构建握笔姿势检测模型,识别握笔姿势;
所述构建笔顺识别模型,是通过检测笔画和笔画间的方向确定笔画顺序;具体实现包括以下子步骤:
步骤1.1:通过构建的笔画分类模型,检测汉字所有笔画;基于检测到的汉字笔画,搜索所有具有相同笔画的候选汉字,记为C={c1,c2,…,ci,…,cn};
步骤1.2:对于每个候选汉字,构建方向索引矩阵,并基于笔画组成,找出该汉字所有的笔顺排列;
步骤1.3:通过构建的方向分类模型,将检测到的汉字相邻笔画间的方向序列D与方向索引矩阵T计算差异匹配度dif;
其中,si表示模板中对应检测的两个相邻笔画之间的标准方向,di表示检测的两个相邻笔画的方向;
步骤1.4:比较确定相似度最小的候选汉字笔顺序列,同时确定所属的汉字;
其中,scorei表示第i个汉字的得分,m表示该汉字基于检测的笔画进行排列组合,有m种笔顺排列方式;i表示所属汉字,j表示所属笔顺,difi,j就是第i个汉字的第j类笔顺的差异匹配度;
步骤2:数据收集;
从智能手表内置的加速度和陀螺仪传感器收集数据,包括线性加速度和陀螺仪角速度;其中,加速度通过坐标系转换和重力消除得到地球坐标系下的线性加速度;
步骤3:数据预处理;
基于小波去噪的方法减少收集数据的信号噪声,基于窗函数检测书写信号;
步骤4:基于窗函数检测书写信号,包括陀螺仪角速度三个轴和线性加速度三个轴的信号;
步骤5:握笔姿势检测或笔顺识别;
基于有监督学习方法,提取检测的笔画信号的特征,通过构建的笔顺识别模型和握笔姿势检测模型,最终实现对握笔姿势的检测和笔顺的识别。
2.根据权利要求1所述的基于智能手表的握笔姿势检测和汉字笔顺识别方法,其特征在于:步骤1.1中所述检测汉字所有笔画,是通过有监督学习的方法,构建汉字笔画分类器和汉字方向分类器。
3.根据权利要求1所述的基于智能手表的握笔姿势检测和汉字笔顺识别方法,其特征在于:步骤1.2中所述构建方向索引矩阵,是对于检测的汉字笔画和方向分别进行编码,检测的汉字笔画作为索引,方向作为矩阵元素;在方向索引矩阵中依据笔画索引搜索方向。
4.根据权利要求3所述的基于智能手表的握笔姿势检测和汉字笔顺识别方法,其特征在于:所述对于检测的汉字笔画和方向分别进行编码,汉字笔画的编码为八位二进制,前三位代表同一笔画出现的次数,后五位表示笔画类;方向笔画的编码为八位,从上开始按顺时针方式分别编码上、右上、右、右下、下、左下、左、左上为000、001、010、011、100、101、110、111。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉大学,未经武汉大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810816149.5/1.html,转载请声明来源钻瓜专利网。