[发明专利]基于深度Q网络的区域电网运行点调度优化方法有效
申请号: | 201810819706.9 | 申请日: | 2018-07-24 |
公开(公告)号: | CN108964042B | 公开(公告)日: | 2021-10-15 |
发明(设计)人: | 唐昊;王诗平;王珂;姚建国;杨胜春;吕凯 | 申请(专利权)人: | 合肥工业大学 |
主分类号: | H02J3/00 | 分类号: | H02J3/00;H02J3/38;G06Q10/06;G06Q50/06 |
代理公司: | 北京轻创知识产权代理有限公司 11212 | 代理人: | 沈尚林 |
地址: | 230000 *** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 深度 网络 区域 电网 运行 调度 优化 方法 | ||
本发明提供了一种基于深度Q网络的区域电网运行点调度优化方法,包括步骤:确定区域电网运行点调度中心的调度架构;将区域电网运行点调度动态决策过程建模为相应的马尔科夫决策过程模型,该模型包含状态、行动、代价及优化目标函数;利用深度Q网络对马尔科夫动态决策过程模型进行策略求解;区域电网运行点至少包括下一个调度时段的常规火电机组出力、风电机组出力以及柔性负荷削减量;区域电网运行点的调度至少包括依据风电、负荷功率超短期预测信息和当前时段运行点信息,动态确定下一调度时段的电网运行点。本发明可有效应对新能源出力与负荷需求的随机性,充分发挥源‑荷互动调度潜力,维持区域电网功率的动态平衡,提高电网系统运行效率。
技术领域
本专利涉及电网智能调度技术领域,具体涉及一种基于深度Q网络的区域电网运行点调度优化方法。
背景技术
随着大规模风电并网和柔性负荷的迅速发展,源-荷双侧不确定性对电网调度运行的影响日益严重,源-荷互动为源-网-荷互动框架体系的重要组成部分,能够促进发用电资源的合理利用,提高系统运行的安全性、经济性、清洁性等综合效益。
现有技术中,存在在日前调度计划模型中考虑可中断负荷和激励负荷的方案,体现了负荷侧资源的潜在调峰效益,如杨楠等[杨楠,王波,刘涤尘, 等.计及大规模风电和柔性负荷的电力系统供需侧联合随机调度方法[J]. 中国电机工程学报,2013,33(16):63-69.];也存在设计一种多时间尺度滚动协调的需求响应调度框架的方案,体现了负荷侧资源在不同时间尺度的调度潜力,如姚建国等[姚建国,杨胜春,王珂,等.平衡风功率波动的需求响应调度框架与策略设计[J].电力系统自动化,2014,38(9):85-92.]基于风功率波动和负荷响应的特征;还存在构建基于日前和实时调度的互动决策模型的方案,实现了间歇性能源和柔性负荷的协调优化,如Galvan等[Galvan E, Alcaraz G G,Cabrera N G.Two-phase Short-term Scheduling Approach with Intermittent Renewable EnergyResources and Demand Response[J].IEEE Latin America Transactions,2015,13(1):181-187.]。这些方案,是通过柔性负荷调度来应对发电侧资源的随机性问题,对电网运行点动态调度具有一定借鉴意义,然而传统处理不确定性电网调度问题的方法主要集中于鲁棒优化方法、不确定规划等,在解决区域电网运行点动态调度问题时,随着问题规模的增大,传统的算法会出现计算量大,“维数灾”、难以得到全局最优解等问题,其在线应用存在很大挑战。
发明内容
本发明的目的是提供一种基于深度Q网络的区域电网运行点调度优化方法,可有效应对新能源出力与负荷需求的随机性,充分发挥源-荷互动调度潜力,维持区域电网功率的动态平衡,提高电网系统的运行效率。
为了克服现有技术存在的问题,达到上述目的,本发明提供了一种基于深度Q网络的区域电网运行点调度优化方法,其包括以下步骤:
确定区域电网运行点调度中心的调度架构;
将区域电网运行点调度动态决策过程建模为相应的马尔科夫动态决策过程模型,该模型包含状态、行动、代价及优化目标函数;
利用深度Q网络对所述马尔科夫动态决策过程模型进行策略求解,获得优化策略;
其中,所述区域电网运行点至少包括下一个调度时段的常规火电机组出力、风电机组出力以及柔性负荷削减量;
所述调度架构至少包括NG个常规火电机组、NW个风电机组和NF个DLC 柔性负荷代理;
所述区域电网运行点的调度至少包括依据风电、负荷功率超短期预测信息和当前时段运行点信息,动态确定下一调度时段的电网运行点。
建立所述马尔科夫动态决策过程模型,包括以下步骤:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于合肥工业大学,未经合肥工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810819706.9/2.html,转载请声明来源钻瓜专利网。