[发明专利]一种量化交易预测方法、装置及设备在审

专利信息
申请号: 201810864202.9 申请日: 2018-08-01
公开(公告)号: CN109345050A 公开(公告)日: 2019-02-15
发明(设计)人: 毕野;黄博;吴振宇;王建明;肖京 申请(专利权)人: 平安科技(深圳)有限公司
主分类号: G06Q10/06 分类号: G06Q10/06;G06Q40/04
代理公司: 北京中强智尚知识产权代理有限公司 11448 代理人: 黄耀威
地址: 518000 广东省深圳市福田街*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 交易 交易行为 预测模型 量化 交易数据 预测 装置及设备 失败概率 失败交易 市场指标 更新 交易市场 市场交易 学习训练 准确率 申请
【说明书】:

本申请公开了一种量化交易预测方法、装置及设备,其中方法包括:获取当前时刻交易市场的当前市场指标和当前交易指标;将当前市场指标和当前交易指标代入量化交易预测模型,对量化交易预测模型中相对应的参数进行更新;获取待测交易行为的待测交易数据,将待测交易数据输入更新后的量化交易预测模型进行预测,确定出待测交易数据属于失败交易数据的失败概率,并根据该失败概率判断该待测交易行为是否属于失败交易行为。通过上述方案,有效提高交易行为预测判断的速度,并且量化交易预测模型具有学习训练的能力,能够随着市场交易的变化及时更新,进而有效提高交易行为预测的准确率。

技术领域

本申请涉及金融交易技术领域,特别是涉及一种量化交易预测方法、装置及设备。

背景技术

随着人们生活水平的提高,人们手中积累的资产越来越多,有些人会将这些资产放在银行中,但是银行的收益利率非常的低,因此现在很多人选择将资产进行金融投资交易。

由于金融投资交易的收益情况不固定,为了能够更好的帮助投资者进行理财投资,很多理财公司使用量化交易的方式为投资者进行投资检测。量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

但是目前的量化交易的准确率还比较低,对于失败的量化交易只能人工分析和查询,进而来确定是否存在改进方案或者不合理的交易,然后再通过具体的策略代码进行修正,然而上述情况往往会造成过拟合的效果,而且对于量化策略的微调会带来负面的效果和影响,很难量化最终的效果。

发明内容

有鉴于此,本申请提供了一种量化交易预测方法、装置及设备,主要目的在于解决目前对于失败的量化交易只能进行人工分析和查询,使得量化交易的准确率较低的问题。

依据本申请的第一方面,提供了一种量化交易预测方法,所述方法包括:

获取当前时刻交易市场的当前市场指标和当前交易指标,其中,当前市场指标和当前交易指标均会随着时间的变化而不断变动;

将所述当前市场指标和所述当前交易指标代入量化交易预测模型,对所述量化交易预测模型中相对应的参数进行更新,进而保证所述相对应的参数的准确性,所述量化交易预测模型是根据历史失败交易数据进行学习训练获得,所述量化交易预测模型中设有分别与当前市场指标和当前交易指标相对应的参数;

获取待测交易行为的待测交易数据,将所述待测交易数据输入更新后的量化交易预测模型进行预测,确定出所述待测交易数据属于失败交易数据的失败概率;

将所述失败概率与预定概率进行对比,当所述失败概率大于等于所述预定概率时,则所述待测交易数据属于失败交易数据,否则属于成功交易数据。

依据本申请的第二方面,提供了一种量化交易预测装置,所述装置包括:

获取单元,用于获取当前时刻交易市场的当前市场指标和当前交易指标,其中,当前市场指标和当前交易指标均会随着时间的变化而不断变动;

更新单元,用于将所述当前市场指标和所述当前交易指标代入量化交易预测模型,对所述量化交易预测模型中相对应的参数进行更新,进而保证所述相对应的参数的准确性,所述量化交易预测模型是根据历史失败交易数据进行学习训练获得,所述量化交易预测模型中设有分别与当前市场指标和当前交易指标相对应的参数;

预测单元,用于获取待测交易行为的待测交易数据,将所述待测交易数据输入更新后的量化交易预测模型进行预测,确定出所述待测交易数据属于失败交易数据的失败概率;

确定单元,用于将所述失败概率与预定概率进行对比,当所述失败概率大于等于所述预定概率时,则所述待测交易数据属于失败交易数据,否则属于成功交易数据。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安科技(深圳)有限公司,未经平安科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810864202.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top