[发明专利]基于多时序属性元素深度特征的小麦重度病害预测方法有效
申请号: | 201810865344.7 | 申请日: | 2018-08-01 |
公开(公告)号: | CN109064460B | 公开(公告)日: | 2021-09-28 |
发明(设计)人: | 陈天娇;王儒敬;谢成军;张洁;李瑞;陈红波;胡海瀛 | 申请(专利权)人: | 中国科学院合肥物质科学研究院 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06Q10/04;G06Q50/02 |
代理公司: | 合肥国和专利代理事务所(普通合伙) 34131 | 代理人: | 张祥骞 |
地址: | 230031 *** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 多时 属性 元素 深度 特征 小麦 重度 病害 预测 方法 | ||
本发明涉及基于多时序属性元素深度特征的小麦重度病害预测方法,与现有技术相比解决了无法针对小麦重度病害进行预测的缺陷。本发明包括以下步骤:基础数据的获取;小麦重度病害预测模型的构建;时序信息存储网络和深度卷积神经网络的联合训练;待预测图像和待预测环境信息数据的获取;小麦重度病害的预测。本发明从小麦病害发生的时序维度上图像、环境等多种特征因素出发,利用时序信息存储网络以及深度特征提取网络融合小麦重度病害多时序属性元素,自动学习和获知数据序列中不同时间段小麦病害的程度,从而实现针对于小麦重度病害的预测。
技术领域
本发明涉及农业植保预测技术领域,具体来说是一种基于多时序属性元素深度特征的小麦重度病害预测方法。
背景技术
当下农业大数据正在驱动农业生产向精准化、智能化转变,数据逐渐成为现代农业生产中新兴的生产要素。围绕农田环境下小麦病害大数据表示、识别与预测的模型研究仍处于起步阶段,无论在理论上还是算法上,都还不够完善。特别是,传统的小麦病害识别技术只能识别或预测出病害和非病害小麦,而对于小麦的病害程度则无法判断,而在实际应用中,重度病害的预测对于小麦病害的前期防治有着重要的作用。
现有的小麦病害预测模型研究受限于以下两个方面:影响小麦病害发生的环境信息是复杂多因素,环境信息和获取的直观图像数据具有很高的相关性;其次,没有考虑到小麦病害数据时间观测之间的依赖关系,传统的基于线性回归或神经网络方法无法建模时序预测,以至于其无法预测出重度病害。
小麦病害发生的过程要经历多个状态,对应很多的时间阶段。病害在每个时间段也呈现出不同的特征状态,重度病害是基于从无到有,从轻度、中度演变而来的,不同时间点之间又具有很高的相关性。
因此,如何研发一种能够预测出小麦重度病害的方法已经成为急需解决的技术问题。
发明内容
本发明的目的是为了解决现有技术中无法针对小麦重度病害进行预测的缺陷,提供一种基于多时序属性元素深度特征的小麦重度病害预测方法来解决上述问题。
为了实现上述目的,本发明的技术方案如下:
一种基于多时序属性元素深度特征的小麦重度病害预测方法,包括以下步骤:
基础数据的获取,获取无人机拍摄的多日图像数据集以及环境信息数据;
小麦重度病害预测模型的构建,利用深度卷积神经网络以及时序信息存储网络融合小麦病害不同时间发生的环境、图像的语义和位置环境属性后,构造出小麦病害重度预测模型;
时序信息存储网络和深度卷积神经网络的联合训练,将多日图像数据集作为深度卷积神经网络的训练样本、将环境信息数据作为时序信息存储网络的训练样本,进行两者的联合训练;
待预测图像和待预测环境信息数据的获取;
小麦重度病害的预测,将待预测图像和待预测环境信息数据输入模型,得到小麦重度病害的预测结果。
所述小麦重度病害预测模型的构建包括以下步骤:
环境信息数据和图像信息数据的时域联合学习,对小麦重度病害数据特征建模,选取影响小麦病害发生的若干种环境信息数据以及无人机拍摄的图像信息数据进行时域联合学习;
将多次迭代的时序信息存储网络网络单元最终隐藏层状态h(t)作为输入传递进输出层,利用softmax函数估计重度病害的概率分布yt,
yt=softmax(W*ht+b),
其中,W、b为权值、偏置项。
所述时序信息存储网络和深度卷积神经网络的联合训练包括以下步骤:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院合肥物质科学研究院,未经中国科学院合肥物质科学研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810865344.7/2.html,转载请声明来源钻瓜专利网。