[发明专利]一种基于光学检测的血糖浓度多元逐步回归算法在审
申请号: | 201810871349.0 | 申请日: | 2018-08-02 |
公开(公告)号: | CN109394234A | 公开(公告)日: | 2019-03-01 |
发明(设计)人: | 赵新;张润泽;刘琴 | 申请(专利权)人: | 四川大学 |
主分类号: | A61B5/1455 | 分类号: | A61B5/1455;G06F17/18 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 610041 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 光学检测 算法 血糖 多元线性回归 多元逐步回归 临床实验数据 标准误差 测试数据 检测领域 人体血糖 数据支持 血糖检测 医学实验 浓度仪 特征光 心率 血流 血压 脉搏 关联 | ||
本发明公开了一种基于光学检测的血糖浓度算法,本发明涉及人体血糖浓度的检测领域,目的是基于实际医学实验的大量血糖浓度光学检测数据,建立光学检测数据与血糖浓度的关系,从而为光学检测的血糖浓度仪提供算法和数据支持,在算法层面提高血糖检测的精度。本算法包含的测试数据包含脉搏、CNOGA心率、血流速度,血压、特征光的峰值,在基于大量的临床实验数据基础上,我们通过多元线性回归给出这些参数之间的关联,降低标准误差。
技术领域
本发明设计一种新兴的血糖浓度光学检测数据回归算法,特别是采用逐步回归分析,在有限数据中得到了最优回归。
背景技术
糖尿病是一组以高血糖为特征的代谢性疾病,高血糖则是由于胰岛素分泌缺陷或其他生物作用损伤引起的。糖尿病时长期存在的高血糖,导致各种组织,特别是眼、肾、心脏、血管、神经的慢性损害、功能障碍。目前,随着我国生活质量的提高,这一疾病在大城市中越来越常见,因此这一疾病也得到了人们的极大关注。目前,越来越多的血糖仪出现在市场,为病人提供实时、便利的血糖浓度监测,为医护人员的治疗方案提供思路。通过新型的传感器、光谱分析、电渗透技术、光电检测技术以及信号处理等手段,血糖监测可以以无创的方式进行。
无创光电检测利用的是测量信号与人体组织之间的相互作用,通过反馈回啊立的幅度信息,我们可以分析患者体内的血糖含量。这一方法对内部结构非常敏感,因此我们需要通过复杂的算法对大量的数据进行分析,建立最有模型。
在实际光学检测数据与血糖浓度分析的过程中,传统的多元线性回归建立的线性关系可能存在相关性低、置信区间太大、包含了无统计意义的变量,最后导致建立的关系很难被应用在无创检测的设备中,降低了血糖浓度的检测结果。
发明内容
为了克服以上不足,本发明利用了多元逐步回归算法,以在有限的数据量中建立最优的回归分析。
具体实施方式
以下通过具体的实例分析本算法的实施方式,本领域技术人员可以根据本说明书所揭示的内容轻易的了解到这一算法的优势。本算法亦可通过其他不同的计算机语言实现,本说明书中的各项细节亦可基于不同观点与应用,在不背离基本统计原理的情况下可以进行各种修饰与变更。
本实施中所淑的Y变量包括血糖估计值,优化血糖数量,用来作为自变量的为无创光学测量的数据,包括特征光峰值,并配合心率,血流速度等参数,建立回归方程。
首先利用检测到的数据,将两个峰值设为X1和X2,心率设为X3,血流速度设为X4……而优活血糖数量设为Y1,血糖浓度为Y2,通过临床实验我们得到n组数据,接下来以Y1(优活血糖数量)为例,进行回归分析我们将回归方程写为:
首先建立系数矩阵
Y=[y1 y2 y3 ... yn]T
b=[bl b2 b3 ... bn]T
首先通过最小二乘法得出系数矩阵
b=(XTX)-1XTY
接着利用计算好的系数矩阵参数估计残差平方和,再多个变量的情况下,应变量的总离均差平方和SS总可分解为回归平方和SS回归和残差平方和SS残差两个部分
上式中Yi是观察值而是观测到的平均值回归平方和
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学,未经四川大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810871349.0/2.html,转载请声明来源钻瓜专利网。
- 上一篇:耳源性血氧检测装置
- 下一篇:柔性血氧传感器及其制作方法