[发明专利]一种基于改进型限幅平均滤波的浮动车数据处理方法有效
申请号: | 201810877632.4 | 申请日: | 2018-08-03 |
公开(公告)号: | CN108765961B | 公开(公告)日: | 2021-03-16 |
发明(设计)人: | 李小龙;吴玉珍;谭永滨;程朋根;吴静;王毓乾 | 申请(专利权)人: | 东华理工大学 |
主分类号: | G08G1/01 | 分类号: | G08G1/01;G06F16/215;G06F16/29;G06K9/00;G06K9/34;G06K9/62 |
代理公司: | 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 | 代理人: | 严彦 |
地址: | 330013 江西省南昌*** | 国省代码: | 江西;36 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 改进型 限幅 平均 滤波 浮动 数据处理 方法 | ||
本发明提供一种基于改进型限幅平均滤波的浮动车数据滤选方法,包括数据输入,特征分析,根据FCD分布状态分析、道路交叉口结构分析、FCD与道路的映射分析,得到浮动车轨迹空间分布规律;FCD数据预处理后,依据城市道路矢量图以及道路交叉路口规划规范,分别根据道路节点、道路类型和道路间隔,对浮动车数据进行三级分割,将分割段作为基本研究单元;轨迹中心线拟合,数据转换与整合,结合浮动车轨迹几何特征、运动特征变化规律及浮动车数据的空间分布规律,进行基于改进型限幅平均滤波的浮动车数据滤选。本发明技术方案具有操作便捷、算法高效的优势,可以为后续用浮动车数据探测展宽车道等技术提供更实用的数据来源,提高相应探测精度。
技术领域
本发明属于时空轨迹大数据技术领域,涉及一种基于改进型限幅平均滤波的浮动车数据清洗处理方法。
背景技术
由于交通检测设备故障、通信系统故障及环境因素异常等原因,采集到的交通数据存在遗漏、错误和不精确等问题。这些有质量问题的数据进行道路信息监测,必将产生不稳定因素,影响检测的效果。由浮动车数据的数据量巨大,传统的数据处理方法并不适宜,因此有必要分析浮动车数据中的常见问题,以便选择合适的数据处理方法,检测并消除数据中的错误和不一致,提高数据质量,从而为服务交通管理和公众出行更好地信息服务的质量。
在20世纪80年代,德国人率先提出的一种新型的交通信息检测技术——浮动车技术,之后欧美国家开始对浮动车技术进行研究和实验[1]。随后,许多学者对浮动车技术的概念、浮动车系统的框架以及浮动车数据的处理方法不断研究并完善[2]。
常见的数据问题包括数据重复[3]、数据缺失[4]、数据异常[5]、数据逻辑错误和数据不一致等[6]。
浮动车数据处理从处理内容上,主要包括FCD(Floating Car Data,浮动车数据)误差处理及地图匹配。针对FCD粗差处理,现有FCD粗差处理的方法主要有:数据清洗、空间插值、排序合并法以及机器学习等。
其中,机器学习方法,因具备自动化地发现重复识别规则、减少人工干预量的优势,已成为当前流行的数据处理方法[7-8]。一些学者针从数据的规律性、相似性、重复性视角出发,运用机器学习方法解决数据重复问题,并取得了较高的效率和良好的检测精度[7-9]。
当前本领域的技术难点与实现难度在于:
因为浮动车数据的定位精度不够高,为了提高原始浮动车数据质量,需要根据利用浮动车数据解决的实际问题,制定合理的数据处理策略;且由于浮动车数据量巨大,为了提高数据处理策略并需要采用简便高效的数据处理算法。
传统的测量数据量有限,不需要进行海量的数据处理工作,采用传统的数据处理方法,如3-TIN,即可满足工作需求,但是现有的浮动车数据量快速增长,传统数据处理方法已经不足进行海量的浮动车数据处理。
改进型限幅平均滤波优选数据,是一种广泛应用于信号处理领域的方法,该方法主要包括限幅滤波法[10]、中位值滤波法以及滑动平均滤波法[11,12]等算法,是用以滤除掉来自信号系统及外界环境的干扰信号的一种方法[13]。这种方法具有滤选精度高、处理功能强、灵活、可靠,不受周围环境干扰的影响等优点。
1)限幅滤波法
限幅滤波法,又称程序判断滤波。该方法的基本原理:根据经验制定两次采样允许的最大偏差值(经验差值:A),对每次检测到新值时,判断当前检测的值与前一次的检测值的差值是否小于或等于A,若“是”,则当前检测的值合格;反之,则剔除该值。该方法的优势在于,能有效克服因偶然因素引起的误差干扰,但是,存在无法抑制周期性误差的缺陷。
2)递推平均滤波法
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东华理工大学,未经东华理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810877632.4/2.html,转载请声明来源钻瓜专利网。