[发明专利]一种单侧点云模型的标注方法有效
申请号: | 201810916372.7 | 申请日: | 2018-08-13 |
公开(公告)号: | CN109215112B | 公开(公告)日: | 2022-12-13 |
发明(设计)人: | 王映辉;李敖宇;周天翔;宁小娟 | 申请(专利权)人: | 西安理工大学 |
主分类号: | G06T17/00 | 分类号: | G06T17/00;G06F17/16 |
代理公司: | 西安弘理专利事务所 61214 | 代理人: | 韩玙 |
地址: | 710048*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 单侧点云 模型 标注 方法 | ||
本发明一种单侧点云模型的标注方法,具体按照将点云模型进行场景划分,并构建基于八叉树的分格模型,然后将每个分格模型进行粗标注,再将每个分格模型进行细标注的方法进行。本发明一种单侧点云模型的标注方法,使用改进区域增长算法对点云模型进行标注,能够清晰的划分网格边界,同时解决现有的像素级标注方法中二义性的标注问题。
技术领域
本发明属于计算机图形学和虚拟现实相结合的交叉学科技术领域,涉及一种单侧点云模型的标注方法,具体的涉及一种单视点下测量的单侧点云模型标注方法。
背景技术
因为实测得到的点云数据具有数据量庞大、噪声点多、分布不规则的缺点,这些缺点会使得计算机视觉方面的研究和应用存在巨大的困难,因此需要对原始的实测点云模型进行如去噪、配准、分割、标注、识别等预处理来提高后续研究的精确度和降低处理的难度。
在计算机视觉领域,点云模型的标注问题一直是备受关注的研究课题。根据视觉层次的不同,场景标注可以划分为低层、中层和高层视觉标注。根据标注任务的性质和目标的不同,可将场景标注划分为全局场景标注、特定区域标注以及像素级标注。在实际应用中,需要将低层、中层和高层视觉标注技术结合使用来完成不同的标注任务。
全局场景标注是对整个场景全部的环境进行标注,目标是全局的标注,也称作场景归类,目标结果是描述全局的含义。早期,全局场景标注只是将场景数据区分为室内、室外两种场景,并进行标记。随着研究的深入,提取全局特征描述因子成为最常用的场景全局标注技术手段。
基于全局场景标注方法能够很好的获得整个场景的全部环境,可以迅速展现出一个全局的场景。但是,对于判断某几类物体是否在环境中,其检测结果存在不稳定性。
特定区域标注的主要目的是为了查找、跟踪和定位。主要的工作任务是在场景数据中,判断某几类物体是否在环境中出现和目标物体是否存在场景之中,并标注相应的特定区域。基于特定区域标注能够在场景中准确地查找到目标物体,并对它进行跟踪,已经广泛应用于道路上行人、车辆的检测,室外场景中危险源的检测。但是,在设计模型算法中,仍然对识别率和效率上需要进行改进。
像素级标注是一种更加精细的标注形式和技术,它的任务主要是针对在场景中查找特定物体,一般采用包围盒模型等方法。但是对于面积广阔、形变强的室外场景、区域或者物体,其标注效果往往不尽理想。主要由于在场景数据中,标注的目标过于分散、目标的边界比较模糊、噪声点多,使用特定区域的标注方法难以清晰的划分出各个部分的边界,会对部分标注区域重复定义,产生二义性的标注问题。
发明内容
本发明的目的是提供一种单侧点云模型的标注方法,能够清晰地划分网格的边界。
本发明所采用的技术方案是,一种单侧点云模型的标注方法,具体按照下述方法进行:
将点云模型进行场景划分,并构建基于八叉树的分格模型,然后将每个分格模型进行粗标注,再将每个分格模型进行细标注。
本发明的特点还在于:
具体按照下述方法进行:
步骤1,点云模型场景划分
将点云模型进行场景划分,并构建基于八叉树的分格模型;
步骤2,粗标注
使用霍夫变换检测每个分格模型中的所有平面,选取重心值最小的平面作为地面并标记,然后将每个分格模型进行初步分类标注;
步骤3,细标注
计算每个分格模型中的点云的投影密度,并根据每个分格模型中的点云的投影密度进行优化和修正标注。
步骤1中使用下述步骤点云模型进行场景划分,并构建基于八叉树的分格模型:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安理工大学,未经西安理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810916372.7/2.html,转载请声明来源钻瓜专利网。