[发明专利]一种基于本体的Web服务功能相似性度量方法有效

专利信息
申请号: 201810939188.4 申请日: 2018-08-17
公开(公告)号: CN109359289B 公开(公告)日: 2023-01-31
发明(设计)人: 陆佳炜;卢成炳;吴涵;周焕;徐俊;肖刚 申请(专利权)人: 浙江工业大学
主分类号: G06F40/30 分类号: G06F40/30;G06F40/242;G06F40/194;G06F16/958
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310014 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 本体 web 服务 功能 相似性 度量 方法
【权利要求书】:

1.一种基于本体的Web服务功能相似性度量方法,其特征在于,所述服务功能相似性度量方法包括以下步骤:

第一步、计算领域本体中两个概念A和B之间的语义相似度,过程如下:

步骤(1.1)若概念A和B是相同的或者它们被声明为equivalent classes,则概念A,B的相似度Simconcept为1,否则进行步骤(1.2);

步骤(1.2)若概念A直接或间接为概念B的一个子类,则概念A,B的相似度Simconcept计算公式如下:

其中prop(A)与prop(B)分别表示概念A与概念B的属性集合,Size(prop(B))与Size(prop(A))分别表示概念B和概念A的属性个数,否则进行步骤(1.3)

步骤(1.3)若概念B直接或间接为概念A的一个子类,则概念A,B的相似度Simconcept计算公式如下:

否则进行步骤(1.4);

步骤(1.4)若概念A与概念B没有父子关系,但两个概念直接或间接有一个共同的父类概念C,则采用基于朴素贝叶斯模型的单词语义相似度度量方法,首先分别遍历概念A与概念B的各个属性,通过ComputeFeature函数对概念A与概念B的属性名称进行特征提取,然后采用样本训练后的条件概率分布列和调整因子,计算概念属性之间的相似度Simword,根据概念属性之间的相似度Simword与相似判定因子η的比较,判断两个属性是否为同一属性并进行统计,最后计算出概念A,B的相似度Simconcept

步骤(1.5)若概念A和概念B的关系在上述情况中均不符合,则概念A,B的相似度Simconcept设为0;

第二步、结合第一步的概念相似度计算方法,给出服务S1与服务S2输入相似度Siminput的计算方法,过程如下:

步骤(2.1)创建服务输入参数相似度最大匹配数组InSim并初始化,进行步骤(2.2);

步骤(2.2)将服务S1的输入参数数量减去服务S2的输入参数数量得到参数数量差值d,进行步骤(2.3);

步骤(2.3)若d小于或等于0,则将服务S1设为Sshort,服务S2设为Slong,否则将服务S2设为Sshort,服务S1设为Slong,进行步骤(2.4);

步骤(2.4)遍历Slong中的输入参数,若遍历完成,则进行步骤(2.8),否则从Slong中取出下一个输入参数longi,进行步骤(2.5);

步骤(2.5)遍历Sshort中的输入参数,若遍历完成,则返回步骤(2.4),否则从Sshort中取出下一个输入参数shortj,进行步骤(2.6);

步骤(2.6)根据第一步的概念相似度计算方法计算参数longi与参数shortj的相似度Simij,进行步骤(2.7);

步骤(2.7)将Simij与InSim[i]进行比较,若Simij大于InSim[i],则将InSim[i]的值设为Simij的值,否则InSim[i]值为原值,返回步骤(2.5);

步骤(2.8)计算服务S1与服务S2输入相似度Siminput,计算公式如下:

其中Size(Slong.Input)与Size(Sshort.Input)分别表示服务Slong的输入参数个数与服务Sshort的输入参数个数,|d|表示两个服务的输入参数数量差值,InSim为输入参数的相似度最大匹配数组;

第三步、结合第一步的概念相似度计算方法,给出服务S1与服务S2输出相似度Simoutput的计算方法,过程如下:

步骤(3.1)创建服务输出参数相似度最大匹配数组OutSim并初始化,进行步骤(3.2);

步骤(3.2)将服务S1的输出参数数量减去服务S2的输出参数数量得到参数数量差值d,进行步骤(3.3);

步骤(3.3)若d小于或等于0,则将服务S1设为Sshort,服务S2设为Slong,否则将服务S2设为Sshort,服务S1设为Slong,进行步骤(3.4);

步骤(3.4)遍历Slong中的输出参数,若遍历完成,则进行步骤(3.8),否则从Slong中取出下一个输出参数longi,进行步骤(3.5);

步骤(3.5)遍历Sshort中的输出参数,若遍历完成,则返回步骤(3.4),否则从Sshort中取出下一个输出参数shortj,进行步骤(3.6);

步骤(3.6)根据第一步的概念相似度计算方法计算参数longi与参数shortj的相似度Sim*ij,进行步骤(3.7);

步骤(3.7)将Sim*ij与OutSim[i]进行比较,若Sim*ij大于OutSim[i],则将OutSim[i]的值设为Sim*ij的值,否则OutSim[i]值为原值,返回步骤(3.5);

步骤(3.8)计算服务S1与服务S2输出相似度SimOutput,计算公式如下:

其中Size(Slong.Output)与Size(Sshort.Output)分别表示服务Slong的输出参数个数与服务Sshort的输出参数个数,|d|表示两个服务的输出参数数量差值,OutSim为输出参数的相似度最大匹配数组;

第四步、结合第二步与第三步求得的服务输入相似度Siminput与服务输出相似度SimOutput计算服务S1与服务S2的功能相似性FunctionalSim(S1,S2),计算公式如下:

FunctionalSim(S1,S2)=w1×Siminput+w2×SimOutput,其中权重w1和w2是0和1之间的实数值并且总和为1,它们表示服务消费者对输入相似性和输出相似性认定的重要性。

2.如权利要求1所述的一种基于本体的Web服务功能相似性度量方法,其特征在于,所述步骤(1.4)的步骤如下:

步骤(1.4.1)设变量i表示概念A与概念B中属性相同的个数并置初始值为0,进行步骤(1.4.2);

步骤(1.4.2)若概念A的属性集合prop(A)遍历完成,则进行步骤(1.4.7),否则从prop(A)取出下一个prop(A)j并将其从prop(A)中移除,进行步骤(1.4.3);

步骤(1.4.3)若概念B的属性集合prop(B)遍历完成,则返回步骤(1.4.2),否则从prop(B)取出下一个prop(B)k并将其从prop(B)中移除,进行步骤(1.4.4);

步骤(1.4.4)基于朴素贝叶斯模型,结合WordNet英语词典,通过ComputeFeature函数对prop(A)j与prop(B)k的属性名称进行特征提取进而得出L(prop(A)j,prop(B)k)和D(prop(A)j,prop(B)k),其过程如下:

计算每个属性名称的单词语义,由于每个单词对应一个或多个语义,那么每一单词对也就对应一个或多个语义对,将与单词对相应的所有语义对中距离最短的语义节点距离定义为该单词对距离L(prop(A)j,prop(B)k),并将语义节点距离最短的语义对深度定义为单词对深度D(prop(A)j,prop(B)k),已知属性名称prop(A)j存在于语义节点vj1,vj2,…,vjn的同义词组中,属性名称prop(B)k存在于语义节点vk1,vk2,…vkm的同义词组中,那么prop(A)j与prop(B)k的距离计算公式与深度计算公式如下:

其中L(vja,vkb)表示语义节点vja与语义节点vkb的距离,D(vja,vkb)表示语义对(vja,vkb)的深度;

依据朴素贝叶斯模型的训练集生成均值函数LW(i)和DW(o),再利用均值函数LW(i)和DW(o)计算条件概率分布列P(L(prop(A)j,prop(B)k)|C)和P(D(prop(A)j,prop(B)k)|C),其中C为单词类别分类,其值域为{U,N},其中U代表“一致”,N代表“不一致”,最后计算调整因子α和β,计算公式如下:

步骤(1.4.5)基于朴素贝叶斯模型,将本体概念属性的特征L(prop(A)j,prop(B)k)和D(prop(A)j,prop(B)k)注入到步骤(1.4.4)所得的条件概率分布列中,并依次提取条件概率V1=P(L(prop(A)j,prop(B)k)=i|C=U),V2=P(D(prop(A)j,prop(B)k)=o|C=U),V3=P(L(prop(A)j,prop(B)k)=i|C=N)与V4=P(D(prop(A)j,prop(B)k)=o|C=N),最后结合步骤(1.4.4)中的调整因子á和来计算prop(A)j与prop(B)k之间的相似度Simword,计算公式如下:

Simword(prop(A)j,prop(B)k)=(αV1×V2)/(αV1×V2+βV3×V4),进行步骤(1.4.6);

步骤(1.4.6)若Simword大于或等于相似判定因子η,则prop(A)j与prop(B)k为同一属性并将变量i加1,返回步骤(1.4.2),否则返回步骤(1.4.3);

步骤(1.4.7)计算概念A,B的相似度Simconcept,计算公式如下:

其中i表示概念A与概念B中属性相同的个数,prop(A)与prop(B)分别表示概念A与概念B的属性集合,Size(prop(B))与Size(prop(A))分别表示概念B和概念A的属性个数,进行步骤(1.5)。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810939188.4/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top