[发明专利]一种基于双学习网络的立体图像视觉显著提取方法有效

专利信息
申请号: 201810981210.1 申请日: 2018-08-27
公开(公告)号: CN109409380B 公开(公告)日: 2021-01-12
发明(设计)人: 周武杰;蔡星宇;周扬;邱薇薇;张宇来;向坚 申请(专利权)人: 浙江科技学院
主分类号: G06K9/46 分类号: G06K9/46;G06K9/62;G06N3/04
代理公司: 宁波奥圣专利代理有限公司 33226 代理人: 周珏
地址: 310023 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 学习 网络 立体 图像 视觉 显著 提取 方法
【说明书】:

发明公开了一种基于双学习网络的立体图像视觉显著提取方法,其将人类注视图、立体图像的左视点彩色图像和左视差图像构成训练集;然后在训练集的基础上利用VGG网络模型中的特征提取技术构建深度学习模型;接着以训练集中的人类注视图为监督,以训练集中的左视点彩色图像和左视差图像为输入参数,对深度学习模型进行训练;再将待视觉显著提取的立体图像的左视点彩色图像和左视差图像作为输入参数,输入到训练得到的模型中,得到待视觉显著提取的立体图像的视觉显著图像;优点是其能够快速的运行检测,并且具有较强的鲁棒性和预测准确性。

技术领域

本发明涉及一种立体图像处理技术,尤其是涉及一种基于双学习网络的立体图像视觉显著提取方法。

背景技术

在人类视觉接收与信息处理中,由于大脑资源有限以及外界环境信息重要性区别,因此在处理过程中人脑对外界环境信息并不是一视同仁的,而是表现出选择特征。人们在观看图像或者视频片段时注意力并非均匀分布到图像的每个区域,而是对某些显著区域关注度更高。如何将视频中视觉注意度高的显著区域检测并提取出来是计算机视觉以及基于内容的视频检索领域的一个重要的研究内容。而随着立体视频显示技术和高质量立体视频内容获取技术的快速发展,针对立体图像/视频的显著区域检测及建模也是一个非常重要的研究内容。

然而,立体图像并不是平面图像的简单空间拓展,因此人眼感知立体图像产生立体视觉的过程也不是简单的左视点图像和右视点图像叠加的过程,因此,立体视觉特征(例如:三维视觉注意力)并不是平面视觉特性的简单拓展。然而,现有的立体图像显著图提取方法还停留在平面图像显著提取方法的简单拓展上。因此,如何从立体图像中有效地提取出立体视觉特征、如何使得提取出的立体视觉特征符合人眼三维观看行为都是在对立体图像进行视觉显著图提取过程中需要研究解决的问题。

发明内容

本发明所要解决的技术问题是提供一种基于双学习网络的立体图像视觉显著提取方法,其能够快速的运行检测,并且具有较强的鲁棒性和预测准确性。

本发明解决上述技术问题所采用的技术方案为:一种基于双学习网络的立体图像视觉显著提取方法,其特征在于包括以下步骤:

步骤一:选择一个包含有人类注视图及其对应的立体图像的数据库;然后将数据库中的每幅人类注视图缩放至80×60尺寸,将数据库中的每幅人类注视图对应的立体图像的左视点彩色图像和对应的立体图像的左视差图像均缩放至640×480尺寸;再将所有 80×60尺寸的人类注视图、所有640×480尺寸的左视点彩色图像、所有640×480尺寸的左视差图像构成训练集,将训练集中的第k幅80×60尺寸的人类注视图记为将训练集中的第k幅左视点彩色图像记为将训练集中的第k 幅左视差图像记为与和对应;其中,k为正整数,1≤k≤K,K表示数据库中包含的人类注视图的总幅数,也为数据库中包含的立体图像的总幅数,K≥50,表示中坐标位置为(x80,y60) 的像素点的像素值,表示中坐标位置为(x640,y480)的像素点的像素值,表示中坐标位置为(x640,y480)的像素点的像素值, 1≤x80≤80,1≤y60≤60,1≤x640≤640,1≤y480≤480;

步骤二:利用VGG网络模型中的特征提取技术构建深度学习模型,记为MS,其中,深度学习模型的第1个网络块至第5个网络块用于提取彩色特征、第6个网络块至第8个网络块用于提取视差特征、第9个网络块用于融合彩色特征和视差特征、第10 个网络块用于进行位置偏好学习、第11个网络块用于进行卷积学习、第12个网络块用于视觉显著特征融合;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江科技学院,未经浙江科技学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810981210.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top