[发明专利]一种基于机器学习的在线训练现场控制方法有效
申请号: | 201811027871.7 | 申请日: | 2018-09-04 |
公开(公告)号: | CN109188904B | 公开(公告)日: | 2021-06-15 |
发明(设计)人: | 黄孝平;文芳一;黄文哲 | 申请(专利权)人: | 南宁学院 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 贵州派腾知识产权代理有限公司 52114 | 代理人: | 谷庆红 |
地址: | 530200 广西*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 机器 学习 在线 训练 现场 控制 方法 | ||
本发明提供了一种基于机器学习的在线训练现场控制方法;获取现场控制器发送的指令和接收的数据,以接收到的数据为输入值、发送的指令为输出值对插入模型进行多段拟合;每拟合成功一段核函数则在之后接收的数据可拟合该核函数时切换信号通路使该核函数输出作为发送的指令。本发明通过逐段拟合的方式,能够提供有效的在线学习,便于企业有效降低人力物力的投入、缩短研发周期,能顺畅完成控制权从传统的现场控制器到机器学习的插入控制器的交接,且便于通过另外的远程通信方式而远程调整参数。
技术领域
本发明涉及一种基于机器学习的在线训练现场控制方法。
背景技术
目前,机器学习在工业控制中的应用逐渐增多,然而当下本地企业普遍遇到的最大麻烦在于数据严重匮乏,这导致机器学习的控制器难以训练完成,一种折中方案是,分两期进行,先采集一段时间数据,同时完成机器学习控制器的代码,然后根据所采集的少量数据进行训练,得到一期机器学习控制器,将之投入使用,在使用过程中继续采集数据较长时间,然后根据全部采集的数据重新训练机器学习模型,得到二期机器学习控制器,将二期机器学习控制器用于最终控制。然而,采用这种方式,一来研发周期过长,二来人力物力投入极高,对企业而言不如直接聘请操作工人。
为解决上述问题,本公司设计了如图1所示的一种基于分时控制交接控制权的现场控制系统,该现场控制系统能够从硬件上保证从传统的现场控制器向机器学习为控制核心的控制器进行控制权交接可以是一个逐步更替的过程,然而具体如何完成控制权交接,现有技术并未提供技术启示。
发明内容
为解决上述技术问题,本发明提供了一种基于机器学习的在线训练现场控制方法,该基于机器学习的在线训练现场控制方法通过逐段拟合的方式,能够提供有效的在线学习,便于企业有效降低人力物力的投入、缩短研发周期。
本发明通过以下技术方案得以实现。
本发明提供的一种基于机器学习的在线训练现场控制方法;获取现场控制器发送的指令和接收的数据,以接收到的数据为输入值、发送的指令为输出值对插入模型进行多段拟合;每拟合成功一段核函数则在之后接收的数据可拟合该核函数时切换信号通路使该核函数输出作为发送的指令。
所述插入模型采用如下方式进行多段拟合:
a.以当前信号周期接收的数据作为输入值,遍历得到的核函数判断计算结果是否在限定范围,如在则判定为可拟合并将计算结果输出作为发送的指令,如均不在,则以当前信号周期接收的数据作为输入值、当前信号周期发送的指令作为输出值,遍历得到的核函数判断是否能够拟合,如能拟合则将当前信号周期接收的数据抛弃,并将拟合的核函数的计算结果限定范围修正更新,如不能拟合则将接收的数据及对应的发送的指令作为一个数据对放入至待处理数据库;
b.获取待处理数据库中的数据对计数,如大于M则将待处理数据库中的数据对取出,作为现有数据对核函数参数进行计算,计算得到多种核函数初等形式;
c.将取出的数据对代入至多种核函数初等形式中,判断是否有任意一个核函数初等形式可拟合数据对计数80%以上的数据对,如有则将该核函数初等形式标记为计算出的核函数,对应该核函数拟合的数据对则抛弃,其余数据对放回待处理数据库,其余核函数重新初始化。
所述步骤a中,能够拟合的标准为,核函数计算结果与数据对中输出值之间的差小于核函数计算结果与数据对中输出值中任意一值的10%。
所述M取值为15~25。
所述插入模型中核函数的形式至少包括线性函数、指数函数、三角函数。
所述多段拟合的过程,在待处理数据库中数据对数量少于N时结束。
所述N为3~6。
所述多段拟合的过程结束时,清除待处理数据库中的数据对。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南宁学院,未经南宁学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811027871.7/2.html,转载请声明来源钻瓜专利网。