[发明专利]基于视觉皮层处理机制的概念机神经网络图像分类方法在审
申请号: | 201811063141.2 | 申请日: | 2018-09-12 |
公开(公告)号: | CN109190708A | 公开(公告)日: | 2019-01-11 |
发明(设计)人: | 李秀敏;许文强;易浩;薛方正 | 申请(专利权)人: | 重庆大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/06 |
代理公司: | 重庆信航知识产权代理有限公司 50218 | 代理人: | 吴彬 |
地址: | 400030 *** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 图像分类 判据 图像 神经网络 神经元 处理机制 判断依据 视觉皮层 正向 预处理 分类图像 空间方位 输入图像 分类 大脑 网络 | ||
1.基于视觉皮层处理机制的概念机神经网络图像分类方法,包括通过神经网络对图像进行预处理,所述神经网络包括输入层神经元、V1层神经元和V2层神经元,所述通过神经网络对图像进行预处理包括以下步骤:
1)以动态图片的形式输入图像,图像被表达成关于图片像素位置(x,y)和时间t的光强分布I(x,y,t);然后在三个不同的时空尺度r=0,1,2下处理输入,第一个尺度r=0,此时的输入等同于原始输入,另外两个尺度需要连续地使用一个高斯核函数对上一尺度的输入进行模糊化;三种输入Ir(x,y,t)的表达如下:
I0(x,y,t)=I(x,y,t)
其中*表示卷积运算,然后使用一个三维高斯滤波器对输入进行滤波:
其中σV1simple=1.25;
2)求取V1层简单型神经元的响应,V1层简单型神经元被建模为线性的空间-时间-方位滤波器,所述空间-时间-方位滤波器的数量为28个,其感受野为一高斯函数的三阶导数;将V1层简单型神经元集群的第k个滤波器描述为一个和该滤波器方向平行的单位向量uk=(uk,x,uk,y,uk,t),k=1,2,...,28,只有当输入所对应的朝向和滤波器方向相同时,这个滤波器才会被激活;然后在空间位置(x,y)拥有空间-时间方位k的简单型神经元的线性响应为:
其中X=3-Y-T,T和Y为求和变量,X、Y、T的取值范围为[0,3],且三者之和等于3,αV1lin=6.6048;把线性响应Lk,r归一化到一条高斯包络线内便得到简单型神经元的响应:
其中αfilt2rate,r=15Hz将无单位的滤波器响应转换为神经元的放电频率,αV1rect=1.9263,αV1norm=1,σV1norm=3.35,αV1semi=0.1;
3)求取V1层复杂型神经元的响应,对简单型神经元的响应做局部加权求和得到复杂型神经元的响应:
其中αV1complex=0.1,σV1complex=1.6;最终所求取到的复杂型神经元的响应为神经元的平均放电频率;
4)求取V2层神经元的响应,V1层复杂型神经元将通过频率为上述所求得的平均放电频率的泊松过程产生脉冲,并通过突触传递给V2层神经元;V2层神经元的模型为Izhikevich脉冲神经元:
其中v(t)为神经元的膜电位,u(t)为恢复变量,Isyn(t)为突触前神经元产生的突触电流;当v(t)≥30mV时,神经元会产生一个脉冲,并触发重置:v(t)=c,u(t)=u(t)+d;对于兴奋型神经元:a=0.02,b=0.2,c=-65,d=8;对于抑制型神经元:a=0.1,b=0.2,c=-65,d=2;V1层复杂型神经元到V2层的连接为高斯连接,即两神经元空间距离越大,则有连接的概率会越小,且属于相同滤波器的神经元之间共享权值;V2层共有4个神经元集群,分别对应4个朝向:水平、右对角、竖直和左对角,同一个集群的神经元只对自身偏好的输入朝向有较强的响应,而对其他朝向的输入的响应较弱;且集群之间存在相互抑制;通过计算V2层神经元的平均放电频率来表示所提取到的输入朝向信息;
同理构造8个方向的结构,则V2层共有8个神经元集群,分别对应8个朝向:0°,22.5°,45°,67.5°,90°,112.5°,135°,157.5°,180°;同一个集群的神经元只对自身偏好的输入朝向有较强的响应,而对其他朝向的输入的响应较弱;且集群之间存在相互抑制;同样地,通过计算V2层神经元的来表示所提取到的输入朝向信息。
其特征在于:还包括搭建与V2层神经神经元连接的概念机网络,所述概念机网络由输入层神经元和隐含层神经元构成,概念机网络由输入信号Pj(n)所驱动,所述输入信号Pj(n)为V2层中神经元的平均放电频率;当概念机网络由Pj(n)驱动时,隐含层的活动状态构成了一个高维的状态空间Xj=(x1j,x2j,x3j,...xnj);
输入信号Pj(n)通过输入权值矩阵Win进入隐含层,隐含层激励函数采用双曲正切函数,则概念机网络的更新被描述为:
xj(n+1)=tanh(w*xj(n)+winpj(n+1)+b)
其中,x是隐含层的状态向量,Win为N*1维输入权值连接,b为偏置量;输入连接权值和偏置量均为随机值,且不在训练过程中改变;由于双曲正切激励函数tanh(),使得隐含层的状态空间被限定在(-1,1);初始时,神经元之间的连接可采用随机连接,其连接强度由一个N*N的权值矩阵W*表示,W*是内部连接矩阵;当神经网络由输入信号Pj(n)驱动时,N维的兴奋神经元状态{Xj}位于一个状态星云中,其几何特征由该输入信号决定;
对于隐含层状态序列x(1),x(2),...x(L),构建如下的代价函数:
其中C为概念机矩阵,它描述了隐含层状态空间的特征,α≥0是一个调节参数,通过调节α找到一个使目标函数最小化的平衡点,通过随机梯度下降法得到概念机C;
C(R,α)=R(R+α-2I)-1
其中,R=XXT/L为状态相关矩阵,X为上述N维的兴奋神经元状态空间矩阵,XT为状态空间矩阵X的转置,L为隐含层状态序列的长度;
每类图像对应一个概念机Ci,每类图像所对应的正项判断依据为:
h+=xTCi+x,i为图像类别的数量;
当V2层有水平、右对角、竖直和左对角四个方向上的神经元集群时,先分别计算V2层神经元在水平、右对角、竖直和左对角四个空间方位上的概念机C,分别得到CH,CLD,CV,CRD;再根据不同方向上的概念机计算对应方向上的正向判据hH、hLD、hV和hRD,并最终得道加强判据:
h+=(hH+hLD+hV+hRD)/4
当V2层有0°,22.5°,45°,67.5°,90°,112.5°,135°,157.5°,180°八个方向上的神经元集群时,先分别计算V2层神经元在八个空间方位上的概念机C1,c2,C3,C4,C5,C6,C7和C8,再根据不同方向上的概念机计算对应方向上的正向判据h1、h2、h3、h4、h5、h6、h7和h8,并最终得道加强判据:
h+=(h1+h2+h3+h4+h5+h6+h7+h8)/8;
计算被分类图像在各分类类别的加强正项判据xTC1+x,xTC2+x...xTCi+x,由此确定j=argmax xTCi+x为该图像的分类判断依据。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811063141.2/1.html,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序