[发明专利]一种基于文本AI学习的考题自动生成方法和装置有效

专利信息
申请号: 201811064315.7 申请日: 2018-09-12
公开(公告)号: CN109241534B 公开(公告)日: 2022-12-27
发明(设计)人: 赵宇枫 申请(专利权)人: 重庆工业职业技术学院
主分类号: G06F40/151 分类号: G06F40/151;G06F40/289;G06F16/35
代理公司: 重庆为信知识产权代理事务所(普通合伙) 50216 代理人: 余锦曦
地址: 401120 重庆市*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 文本 ai 学习 考题 自动 生成 方法 装置
【说明书】:

本申请提供的一种基于文本AI学习的考题自动生成方法包括:获取考题素材的文本;对所述文本进行特征提取,生成文本特征向量;利用预先训练的向量匹配模型根据所述文本特征向量将所述文本与样本库中的样本进行匹配,其中,所述样本包括样本考题以及与样本考题对应的样本考题素材;利用预先训练的出题规律模式确定模型根据所述目标样本考题素材与对应的目标样本考题之间的文本特征差异,确定出题规律模式;根据所述出题规律模式,将所述考题素材的文本转换成考题。本申请还提供了基于文本AI学习的考题自动生成装置。本申请通过人工智能来生成考题,节约了人力成本和时间成本,降低了生成考题的成本,可以适用于互联网测试的海量题库自动构造。

技术领域

本申请涉及人工智能技术领域,尤其涉及一种基于文本AI学习的考题自动生成方法和装置。

背景技术

人工智能(Artificial Intelligence,AI)是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大。其中,在文本学习领域,人工智能技术已经应用于自然语言的语义识别、机器翻译等许多方面。

考试作为一种考查参试者所掌握的知识和技能的方式,往往离不开考题,各行各业的人才选拔往往通过不同类型的考题来实现。现有技术中的考题,通常是由人工来完成命题的,即根据考试大纲,选取考题素材,提取素材中的知识点,将知识点作为考点,将所选素材中与该知识点相关的信息作为考题题干,进而生成考题。由于该过程是由人工来完成的,在生成考题的过程中需要大量的时间梳理考题素材,并整理成考题,造成了人力和时间的浪费,进而提高了生成考题的成本。

尤其是随着全民学习型社会的来临,目前各种在线考试系统和知识测试APP越来越普及,都需要建设海量题库作为支撑,因此如何高效率自动生成适当的考题成为一个亟待解决的问题。

发明内容

有鉴于此,本申请的目的在于提出一种基于文本AI学习的考题自动生成方法和装置,来解决现有技术中生成考题的过程由人工来完成造成的人力和时间的浪费,进而提高生成考题成本的技术问题。

基于上述目的,在本申请的一个方面,提出了一种基于文本AI学习的考题自动生成方法,包括:

获取考题素材的文本;

对所述文本进行特征提取,生成文本特征向量;

利用预先训练的向量匹配模型根据所述文本特征向量将所述文本与样本库中的样本进行匹配,其中,所述样本包括样本考题以及与样本考题对应的样本考题素材;

利用预先训练的出题规律模式确定模型根据所述目标样本考题素材与对应的目标样本考题之间的文本特征差异,确定出题规律模式;

根据所述出题规律模式,将所述考题素材的文本转换成考题。

在一些实施例中,所述对所述文本进行特征提取,生成文本特征向量,包括:

提取所述文本中的词组,对所述词组进行属性分类,统计各类别词组的词频,根据词组类别和各类别词组的词频生成文本特征向量。

在一些实施例中,所述提取所述文本中的词组,对所述词组进行属性分类,统计各类别词组的词频,包括:

对所述文本进行分词,将所述文本切分为多个词组,对每个词组进行归类,确定每个词组的属性类别,并对每个属性类别的词组进行词频统计。

在一些实施例中,对每个词组进行归类,确定每个词组的属性类别,具体包括:

构建词组属性分类表,所述词组属性分类表包括词组属性类别以及对应该类别的词组语义,对每个词组进行语义识别,确定所述词组的词组属性类别。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆工业职业技术学院,未经重庆工业职业技术学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811064315.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top