[发明专利]一种基于深度残差网络的随机蕨目标跟踪方法有效
申请号: | 201811071459.5 | 申请日: | 2018-09-14 |
公开(公告)号: | CN109272036B | 公开(公告)日: | 2021-07-02 |
发明(设计)人: | 权伟;高仕斌;李天瑞;赵丽平;陈金强;陈锦雄;卢学民;刘跃平;王晔 | 申请(专利权)人: | 西南交通大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06T7/292 |
代理公司: | 成都点睛专利代理事务所(普通合伙) 51232 | 代理人: | 葛启函 |
地址: | 610031 四*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 网络 随机 目标 跟踪 方法 | ||
本发明公开了一种基于深度残差网络的随机蕨目标跟踪方法,涉及计算机视觉及模式识别技术领域。从初始图像中选择并确定要跟踪的目标对象,检测器构建与初始化;组成的图像序列并按照时间顺序,逐个提取帧图像作为输入图像;跟踪过程中短时跟踪器在以上次确定的目标位置为中心的搜索区域与目标图像块做比较;提取目标图像块作为正样例,并在其周围选取背景图像块作为负样例,生成在线训练集并输入到检测器;检测器对整个图像区域执行目标检测,比较所有测试图像块的目标概率,将具有最大目标概率的测试图像块所对应的位置作为目标所在的位置,目标定位完成。
技术领域
本发明涉及计算机视觉及模式识别技术领域。
背景技术
视觉目标跟踪是计算机视觉领域的重要研究课题,其主要任务是获取目标连续的位置、外观和运动等信息,进而为进一步的语义层分析(如行为识别、场景理解等)提供基础。目标跟踪研究被广泛应用于智能监控、人机交互、自动控制系统等领域,具有很强的实用价值。目前,目标跟踪方法主要包括经典目标跟踪方法和深度学习目标跟踪方法。
经典的目标跟踪方法主要分为生成式方法(Generative Methods)和判别式方法(Discriminative Methods)两类。生成式方法假设目标可以通过某种生成过程或者模型进行表达,如主成分分析(PCA),稀疏编码(Sparse Coding)等,然后将跟踪问题视为在感兴趣的区域中寻找最可能的候选项。这些方法旨在设计一种利于鲁棒目标跟踪的图像表示方法。不同于生成式方法,判别式方法将跟踪视为一个分类或者一种连续的对象检测问题,其任务是将目标从图像背景中分辨出来。这类方法同时利用目标和背景信息,是目前主要研究的一类方法。判别式方法通常包含两个主要的步骤,第一步是通过选择能够辨别目标和背景的视觉特征训练得到一个分类器及其决策规则,第二步是在跟踪过程中将该分类器用于对视场内的每一个位置进行评价并确定最有可能的目标位置。随后将目标框移动到该位置并重复这样的过程,进而实现跟踪,该框架被用于设计出各种形式的跟踪算法。总体来看,经典跟踪方法的主要优势在于运行速度和对辅助数据较少的依赖,同时它们也需要在跟踪的准确性与实时性之间做出权衡。Breiman提出了随机森林算法,它是由结合Bagging技术的多个随机化的决策树组成。Shotton等人将其用于语义分割,Lepetit等人将随机森林用于实时关键点识别,他们都取得了很好的效果。Leistner等人为了有效降低半监督学习的复杂度,利用随机森林的计算效率,分别提出了半监督随机森林算法,多实例学习随机森林算法,以及在线多视图随机森林算法,并成功应用在机器学习的各项问题。Geurts等人提出极度随机森林,即随机森林中的测试阈值也是随机生成。随后,Saffari等人在此基础上结合在线Bagging提出了在线随机森林,促进了随机森林的实时应用。为了进一步提高分类速率,Ozuysal提出了随机蕨算法,并用于关键点识别和匹配。随机蕨是简化的随机森林,不同于随机森林的逐层生长和节点测试,随机蕨由许多的叶节点组成,每个叶节点对应一个完整的特征值编码,它的后验概率由该叶节点所包含的样例数量及其类型决定。Kalal等人将随机蕨用于在线对象检测和跟踪,进一步验证了随机蕨的快速分类能力。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南交通大学,未经西南交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811071459.5/2.html,转载请声明来源钻瓜专利网。