[发明专利]一种基于驾驶员视觉可见信息的智能车辆辅助驾驶方法有效
申请号: | 201811131042.3 | 申请日: | 2018-09-27 |
公开(公告)号: | CN109278753B | 公开(公告)日: | 2020-09-01 |
发明(设计)人: | 蒋晓蓓;成前;王武宏;王乐怡;李成刚;郭宏伟;侯单懿;李敏 | 申请(专利权)人: | 北京理工大学 |
主分类号: | B60W40/00 | 分类号: | B60W40/00;B60W40/02;B60W40/08;B60W50/14 |
代理公司: | 北京市诚辉律师事务所 11430 | 代理人: | 范盈 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 驾驶员 视觉 可见 信息 智能 车辆 辅助 驾驶 方法 | ||
本发明提供了一种基于驾驶员视觉可见信息的智能车辆辅助驾驶方法,其结合了多种不同信息获取方式获取外部视觉可见信息,从驾驶员信息负荷角度对各类信息进行有机划分,使得可获取的信息具有更好的层次性和可解释性。利用所采集并分类的信息,通过机器学习的方法,选取特征向量和最优时间窗,并分别建立基于等级下的特征参数库和驾驶员信息负荷量分类器,为辅助驾驶策略的选择时机和选择方法提供了有效的支持手段,提高了智能车辆辅助驾驶中的人机交互性。
技术领域
本发明属于智能车辆技术领域,尤其涉及一种智能车辆的辅助驾驶方法。
背景技术
智能车辆的主要特点是以技术弥补人为因素的缺陷,使得即便在很复杂的道路情况下,也能够通过人-车交互的智能化手段,对驾驶行为产生主动或者被动的引导、修正甚至直接取代驾驶人完成驾驶任务,但与当下较为流行的自动驾驶技术不同的是,智能车辆的辅助驾驶更多地强调人机配合,而非完全地自主行使。
根据新一代人机交互技术“以用户为中心”的设计理念,智能车辆在对自身进行车身辅助控制时需要综合考虑驾驶员的注意力集中程度,在不同的驾驶员状态下实施不同的车辆辅助控制策略。目前常见的车辆辅助控制策略中多硬件实现(CN108394344A、CN108437896A)的角度出发,缺乏对驾驶员状态评价的有效评判方法和标准,最终导致辅助驾驶接受度不高,辅助驾驶效果不好。在行驶过程中,道路交叉口属于一种各种交通参与者进行汇集、转向等操作的区域,不同方向的车辆、行人、自行车流等在此交汇,存在很多冲突和交汇点,是交通事故的多发地带,路况的各种信息和事件的负荷和处理,也会对驾驶行为产生影响和压力。因而对于这种路段智能车辆采取何种辅助策略、如何在驾驶员和车辆之间分配控制权,直接关系到智能车辆在道路交叉口的安全态势以及辅助驾驶的有效性和可接受度。目前多从道路设计、改善车辆行驶稳定性(CN108182812A)等方面改善交叉口的安全态势,并未考虑从使用者-驾驶员出发。因此,本领域中尚缺发对驾驶员处于道路交叉口地带时的信息负荷进行有效评价,并相应地提供合理的辅助驾驶策略的方法。
发明内容
针对上述本领域中所存在的技术问题,本发明提供了一种基于驾驶员视觉可见信息的智能车辆辅助驾驶方法,具体包括以下步骤:
步骤一、分别采集通过当前在DSRC通信协议下的道路和其他车辆的信息、车载摄像装置获取的车辆外部视觉可见信息、行驶过程中驾驶员瞳孔直径、注视点分布百分比;
步骤二、对所述步骤一采集的所述视觉可见信息提取特征参数建立特征参数库,并用于训练驾驶员信息负荷量等级分类器;
步骤三、利用所述步骤二中训练的所述驾驶员信息负荷量等级分类器对实际行车过程中所采集的道路交叉口相关信息进行在线辨识,得到实时信息负荷量等级;
步骤四、基于所述步骤三中辨识得到的所述实时信息负荷量等级,提供相应的辅助驾驶策略。
进一步的,所述步骤一中的所述视觉可见信息包括:与路面、路肩、中央隔离带设施相关的道路物理信息,与其他道路使用者相关的道路动态信息、与道路标志、标线、信号灯、广告牌相关的道路意义信息,与道路周边的自然及人文景观,包括树木、绿化、建筑、天空等的道路景观信息。
进一步的,所述步骤二中所述视觉可见信息提取特征参数具体包括:对所述道路物理信息通过车-路通信方式分别提取道路设施元素面积、道路设施元素的醒目性,以及驾驶员相对道路设施元素的距离;
对所述道路动态信息通过车-车通信方式分别提取不同道路参与者的交通方式系数、每种交通方式的权重,以及每种交通方式的参与者个数;
对所述道路意义信息通过车-路通信方式分别提取不同道路意义元素权重、单个道路意义元素所包含的信息量,以及不同交通标志上包含某个道路意义元素的个数;
对所述道路景观信息通过车载摄像装置分别提取道路景观元素的面积、道路景观元素的醒目程度,以及道路景观元素距驾驶人的距离。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811131042.3/2.html,转载请声明来源钻瓜专利网。