[发明专利]一种基于改进HHT的滚动轴承故障诊断方法有效
申请号: | 201811167955.0 | 申请日: | 2018-10-08 |
公开(公告)号: | CN109030001B | 公开(公告)日: | 2020-05-08 |
发明(设计)人: | 刘志亮;彭丹丹;夏简硕;左明健 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G01M13/045 | 分类号: | G01M13/045 |
代理公司: | 成都行之专利代理事务所(普通合伙) 51220 | 代理人: | 温利平 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 改进 hht 滚动轴承 故障诊断 方法 | ||
本发明公开了一种基于改进HHT的滚动轴承故障诊断方法,通过软筛分停止准则自适应地确定EMD和NHT的筛分迭代次数并进行筛分,得到瞬时幅值AMi[n]和瞬时频率fi[n],再利用AMi[n]和fi[n]构建时频谱,并通过时频谱生成快速谱峭度图,选择峭度值最高的频带进行平方包络解调,找出故障特征频率点观测其幅值变化,从而确定故障。
技术领域
本发明属于滚动轴承故障诊断技术领域,更为具体地讲,涉及一种基于改进型HHT的滚动轴承故障诊断方法。
背景技术
滚动轴承是旋转机械中应用最广泛的一种部件,而且作为旋转机械关键部件之一,其工作状态的好坏会影响整个设备的运行状态。滚动轴承一旦发生故障,必将导致旋转机械结构失效,从而带来经济损失,严重时还会引发安全事故。因此,对滚动轴承进行故障诊断具有重要的工程意义。
当滚动轴承发生故障时,其振动信号为多分量的调幅-调频信号,在进行解调之前,需要将其分解为若干个单分量的调幅-调频信号。利用HHT变换对故障信号的分析,一般先采用经验模态分解(EMD)对故障振动信号进行模态分解,然后对分解所得的固有模态函数(IMF)进行希尔伯特变换(HT)得到时频谱图。但是,HT解调存在负频率问题,因此,采用归一化希尔伯特变换(NHT) 解调IMF信号。然而,EMD和NHT的筛分停止准则几乎都采用硬筛分停止准则,即需要有先验知识的经验丰富的专家预先设定阈值。这种硬筛分方法对于实际的振动信号不具有自适应性,不利于抑制EMD的模态混叠问题,也不能确保NHT是否解调完全。因此,本发明提供一种自适应地确定筛分次数的软筛分停止准则,首先用均方根(RMS))和超峭度(EK)两个特征确定目标函数,然后提出一种启发式机制,自适应地确定最佳的筛分迭代次数。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于改进型HHT的滚动轴承故障诊断方法,先通过软筛分停止准则进行筛分,然后提取谱峭度,选择峭度值最高的频带进行平方包络解调,找出故障特征频率点观测其幅值变化,从而确定故障。
为实现上述发明目的,本发明为一种基于改进型HHT的滚动轴承故障诊断方法,其特征在于,包括以下步骤:
(1)、采集滚动轴承振动信号
使用振动数据采集仪以采样频率Fs采集待检测滚动轴承在运行状态下垂直方向的振动信号,记为x[n],n=1,2,…,Ns,Ns为总采样点数;
(2)对采集的振动信号x[n]进行改进型EMD
(2.1)、令每个IMF的初始信号为ri[n],每次筛分过程的初始信号为hik[n], i表示第i个IMF,k表示第k次筛分;设置每个IMF的最大筛分次数为Imax;初始化i=1,ri[n]=x[n];
(2.2)、令k=0,hik[n]=ri[n];
(2.3)、令k=k+1,确定hik-1[n]中所有极值点,然后分别采用三次样条曲线连接所有极大值点和极小值点,从而依次形成上包络线Emaxik[n]和下包络线 Eminik[n];
(2.4)、计算hi(k-1)[n]的包络均值信号mik[n];
(2.5)、计算估计的零均值信号hik[n];
hik[n]=hi(k-1)[n]-mik[n]
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811167955.0/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种高速大载荷卧式滑动轴承性能试验台
- 下一篇:一种EGR冷却实验装置