[发明专利]基于变分解耦合方式对符号有向网络的表达学习方法有效

专利信息
申请号: 201811184604.0 申请日: 2018-10-11
公开(公告)号: CN109523012B 公开(公告)日: 2021-06-04
发明(设计)人: 张娅;陈旭;姚江超;李茂森;王延峰 申请(专利权)人: 上海交通大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08;G06Q50/00
代理公司: 上海汉声知识产权代理有限公司 31236 代理人: 庄文莉
地址: 200240 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 分解 耦合 方式 符号 网络 表达 学习方法
【说明书】:

发明提供一种基于变分解耦合方式对符号有向网络的表达学习方法,读取社交网站的符号有向网络数据,符号有向网络数据主要包括节点间边正负和方向的网络数据;令符号有向网络数据根据符号进行分离,得到正无向图、负无向图,所述正无向图用邻接矩阵A+表示,所述负无向图用邻接矩阵A表示;令邻接矩阵A+、A输入至变分解耦合编码器,进行节点编码后的向量表达学习,记为学习后向量表达;基于符号有向网络中节点间的关系构建结构解码器,依照目标损失函数进行修正,得到优化后向量表达;令优化后向量表达应用于设定的数据挖掘任务。通过分离符号有向网络形成正无向网络、负无向网络,学习节点的符号化局部连续性特征,充分挖掘节点间的依赖性模式,适合于社交网络中用户推荐。

技术领域

本发明涉及社交网络领域,具体地,涉及一种基于变分解耦合方式对符号有向网络的表达学习方法,尤其是涉及一种结合贝叶斯方法和图卷积方法,基于变分解耦合,以一种解耦合的方式学习网络中节点的表达,用于社交网络中用户间关系的预测以及用户推荐。

背景技术

图作为一种非规则的,非欧式空间的数据类型,广泛存在于现实生活中。例如,基因图谱,社交网络,知识图谱等。故而图(网络)数据中节点的表达学习成为近年来的研究热点。网络节点表达是网络分析中的基础任务,良好的节点表达有利于许多其他数据挖掘的任务,例如节点间边的预测,节点的分类,社区检测等。

现实中的有些社交网络的边既存在方向,又存在正负。如Epinions和Slashdot网站。这种网络称为符号有向网络。有研究证明,负向的边包含额外的信息,该信息有利于其他任务的建模解决。网络中的边的方向代表了两个节点间不对称信息。这种非对称信息对某些非对称任务如用户推荐有着重要作用。例如社交网络中的知名用户往往不会关注普通用户,但是普通用户更倾向于关注知名用户。如何编码符号有向网络中的丰富信息主要有两点挑战:1、建模节点的局部连续性特征的时候,如何将节点的边的正负性考虑进去;2、如何更好的利用带符号的有向边重构图的拓扑结构。

至于第一点,在图结构的数据中捕捉节点的局部连续性特征存在必须性。因为图谱数据中的各个节点之间相互依赖,并且形成了一种更为复杂的模式,即局部连续性。在符号有向网络中,不同符号的边拥有不同的传播影响力,故而局部连续性特征因边的符号而产生耦合,更难建模。虽然目前已有工作在建模节点的局部连续性特征,但他们均忽略了不同符号的边的不同传播力。同时,这些工作都是分步进行,不能端到端的训练学习。

关于第二点,目前的工作着重于对符号邮箱网络中的正边和负边关系建模。但无边作为网络结构的一部分,也包含有重要信息,却被现有工作忽略。在社交网络结构平衡理论中,便指出符号有向社交网络中无边较于正边和负边三者之间,均有相对关系。

如何克服上述两点挑战,并让这个模型端到端训练以学习到更充分的节点表达对下游许多数据挖掘任务均有重要意义。

发明内容

针对现有技术中的缺陷,本发明的目的是提供一种基于变分解耦合方式对符号有向网络的表达学习方法。

根据本发明提供的一种基于变分解耦合方式对符号有向网络的表达学习方法,包括以下步骤:

符号有向网络数据收集步骤:读取社交网站的符号有向网络数据,所述符号有向网络数据主要包括节点间边正负和方向的网络数据;

符号有向网络分离步骤:令符号有向网络数据根据符号进行分离,得到正无向图、负无向图,所述正无向图用邻接矩阵A+表示,所述负无向图用邻接矩阵A-表示;

变分解耦合编码器步骤:令邻接矩阵A+、A-输入至变分解耦合编码器,进行节点编码后的向量表达学习,记为学习后向量表达;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811184604.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top