[发明专利]一种基于VMD的齿轮振动信号降噪及故障诊断方法有效
申请号: | 201811206915.2 | 申请日: | 2018-10-17 |
公开(公告)号: | CN109443752B | 公开(公告)日: | 2020-11-27 |
发明(设计)人: | 徐小力;刘秀丽;吴国新;蒋章雷;张雪英 | 申请(专利权)人: | 北京信息科技大学 |
主分类号: | G01M13/021 | 分类号: | G01M13/021;G01M13/028 |
代理公司: | 北京远创理想知识产权代理事务所(普通合伙) 11513 | 代理人: | 张素妍 |
地址: | 100192 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 vmd 齿轮 振动 信号 故障诊断 方法 | ||
本发明涉及一种基于VMD的齿轮振动信号降噪及故障诊断方法,其步骤:采集齿轮在正常运行状态、点蚀故障、磨损故障以及断齿故障下的振动信号xw(n)={xw(1),...,xw(N)},其中,N代表每组数据个数,w代表数据组别,w=1、2、3、4,分别代表正常运行状态、点蚀故障状态、磨损故障状态、断齿故障状态;对xw(n)={xw(1),...,xw(N)}中正常运行状态下的原始振动信号x1(n)进行VMD‑模平方阈值处理;将所有齿轮振动信号xw(n)按照步骤2)进行VMD‑模平方阈值处理,得到处理后的信号提取处理后的信号的每组信号的峭度和均方根值组成特征向量K和R;利用PNN进行故障诊断。
技术领域
本发明涉及机械振动信号降噪及故障诊断技术领域,特别是关于一种基于VMD的齿轮振动信号降噪及故障诊断方法。
背景技术
作为机械传动形式的基本组成部分,齿轮运行情况的好坏直接影响到机械设备的运行状态。由于齿轮故障信号常呈现出强耦合性、非线性、非平稳性的特点,传统降噪与故障诊断方法难以对故障进行有效的诊断,所以有效的信号降噪和故障诊断方法可以显著提高齿轮故障诊断的准确率。
发明内容
针对上述问题,本发明的目的是提供一种基于VMD的齿轮振动信号降噪及故障诊断方法,该方法能够有效的提取非平稳齿轮运行信号的故障特征,并进行故障诊断,能够对齿轮故障进行有效的识别。
为实现上述目的,本发明采取以下技术方案:一种基于VMD的齿轮振动信号降噪及故障诊断方法,其包括以下步骤:1)采集齿轮在正常运行状态、点蚀故障、磨损故障以及断齿故障下的振动信号xw(n)={xw(1),...,xw(N)},其中,N代表每组数据个数,w代表数据组别,w=1、2、3、4,分别代表正常运行状态、点蚀故障状态、磨损故障状态、断齿故障状态;n为第w组数据中第n个数据点,n∈(1,N);2)对xw(n)={xw(1),...,xw(N)}中正常运行状态下的原始振动信号x1(n)进行VMD-模平方阈值处理;3)将所有齿轮振动信号xw(n)按照步骤2)进行VMD-模平方阈值处理,得到处理后的信号4)提取处理后的信号的每组信号的峭度和均方根值组成特征向量K和R;5)利用PNN进行故障诊断。
进一步,所述步骤2)中,VMD-模平方阈值处理步骤如下:2.1)首先对信号x1(n)进行VMD分解;2.2)原始振动信号x1(n)经VMD后分解为k个模态分量IMF1,IMF2,‥‥,IMFk,对每个IMF分量进行模平方阈值处理;2.3)将模平方阈值处理后的分量重构,得到重构后的信号
进一步,所述步骤2.1)中,VMD分解的步骤为:2.1.1)令m=0,初始化第k个模态函数uk记为当前模态函数功率谱的中心ωk记为和m=0为所对应的傅里叶变换λ1,其中m为迭代次数;λ为所对应的傅里叶变换;k为原始振动信号x1(n)进行VMD分解后得到的模态个数;
2.1.2)根据式更新uk;
根据式更新ωk;
根据式更新λ;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京信息科技大学,未经北京信息科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811206915.2/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种适用多种型号滚珠丝杠副的多功能跑合装置
- 下一篇:一种曲轴齿轮检查装置