[发明专利]运算方法、系统及相关产品有效
申请号: | 201811220957.1 | 申请日: | 2018-10-19 |
公开(公告)号: | CN111079924B | 公开(公告)日: | 2021-01-08 |
发明(设计)人: | 不公告发明人 | 申请(专利权)人: | 中科寒武纪科技股份有限公司 |
主分类号: | G06N3/08 | 分类号: | G06N3/08;G06N3/063 |
代理公司: | 北京林达刘知识产权代理事务所(普通合伙) 11277 | 代理人: | 刘新宇 |
地址: | 100190 北京市海*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 运算 方法 系统 相关 产品 | ||
本公开涉及一种运算方法、系统及相关产品。该系统包括指令生成设备和运行设备。指令生成设备包括:设备确定模块用于根据接收到的宏指令,确定执行宏指令的运行设备;指令生成模块用于根据宏指令和运行设备,生成运行指令。运行设备包括:控制模块用于获取所需数据、神经网络模型以及运行指令,对运行指令进行解析,获得多个解析指令;执行模块用于根据所述数据执行所述多个解析指令,得到执行结果。本公开实施例所提供的运算方法、系统及相关产品,可跨平台使用,适用性好,指令转换的速度快、处理效率高、出错几率低,且开发的人力、物力成本低。
技术领域
本公开涉及信息处理技术领域,尤其涉及一种神经网络指令处理方法、系统及相关产品。
背景技术
随着科技的不断发展,神经网络算法的使用越来越广泛。其在图像识别、语音识别、自然语言处理等领域中都得到了良好的应用。但由于神经网络算法的复杂度越来越高,其模型的规模不断增大。基于图形处理器(Graphics Processing Unit,简称GPU)、中央处理器(Central Processing Unit,简称CPU)的大规模的神经网络模型,要花费大量的计算时间,且耗电量大。相关技术中,对神经网络模型的处理速度进行加快的方式存在无法跨平台处理、处理效率低、开发成本高、易出错等问题。
发明内容
有鉴于此,本公开提出了一种神经网络指令处理方法、系统及相关产品,使其能够跨平台使用,提高处理效率,降低出错几率和开发成本。
根据本公开的第一方面,提供了一种神经网络指令处理系统,所述系统包括指令生成设备和运行设备,
所述指令生成设备,包括:
设备确定模块,用于根据接收到的宏指令,确定执行所述宏指令的运行设备;
指令生成模块,用于根据所述宏指令和所述运行设备,生成运行指令;
所述运行设备,包括:
控制模块,用于获取所需数据、神经网络模型以及所述运行指令,对所述运行指令进行解析,获得多个解析指令;
执行模块,用于根据所述数据执行所述多个解析指令,得到执行结果。
根据本公开的第二方面,提供了一种机器学习运算装置,所述装置包括:
一个或多个上述第一方面所述的神经网络指令处理系统,用于从其他处理装置中获取待运算数据和控制信息,并执行指定的机器学习运算,将执行结果通过I/O接口传递给其他处理装置;
当所述机器学习运算装置包含多个所述神经网络指令处理系统时,所述多个所述神经网络指令处理系统间可以通过特定的结构进行连接并传输数据;
其中,多个所述神经网络指令处理系统通过快速外部设备互连总线PCIE总线进行互联并传输数据,以支持更大规模的机器学习的运算;多个所述神经网络指令处理系统共享同一控制系统或拥有各自的控制系统;多个所述神经网络指令处理系统共享内存或者拥有各自的内存;多个所述神经网络指令处理系统的互联方式是任意互联拓扑。
根据本公开的第三方面,提供了一种组合处理装置,所述装置包括:
上述第二方面所述的机器学习运算装置、通用互联接口和其他处理装置;
所述机器学习运算装置与所述其他处理装置进行交互,共同完成用户指定的计算操作。
根据本公开的第四方面,提供了一种机器学习芯片,所述机器学习芯片包括上述第二方面所述的机器学习络运算装置或上述第三方面所述的组合处理装置。
根据本公开的第五方面,提供了一种机器学习芯片封装结构,该机器学习芯片封装结构包括上述第四方面所述的机器学习芯片。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中科寒武纪科技股份有限公司,未经中科寒武纪科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811220957.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种附件接口静电防护电路及设备
- 下一篇:一种受流器及磁悬浮列车