[发明专利]基于粘度变化的聚合工艺参数调节方法有效
申请号: | 201811221084.6 | 申请日: | 2018-10-19 |
公开(公告)号: | CN109472397B | 公开(公告)日: | 2021-12-14 |
发明(设计)人: | 郝矿荣;殷璋琦;陈磊;蔡欣;唐雪嵩 | 申请(专利权)人: | 东华大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06N3/00 |
代理公司: | 上海统摄知识产权代理事务所(普通合伙) 31303 | 代理人: | 金利琴 |
地址: | 201620 上*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 粘度 变化 聚合 工艺 参数 调节 方法 | ||
本发明涉及一种基于粘度变化的聚合工艺参数调节方法,将过去连续时间段Ta内的熔体粘度数据转化为时间序列I后对其进行模糊信息粒化处理得到三个特征向量Low、R和Up,再将三个特征向量输入到改进的ELM中由其输出与未来连续时间段Tb内的熔体粘度数据的波动范围相关的数值,将波动范围与参考范围进行比较后根据比较结果调节聚合工艺参数,改进的ELM是采用粒子群算法优化输入层权值和隐含层阈值后的ELM,粒子群算法的适应度函数为训练样本的均方误差。本发明将模糊信息粒化、极限学习机及粒子群算法有机结合,样本维数少,实时性好,预测精度高;同时预测结果可对工艺参数进行调节。
技术领域
本发明属于工艺优化领域,涉及一种基于粘度变化的聚合工艺参数调节方法,特别是涉及一种基于模糊信息粒化和改进的ELM的预测熔体特性粘度进而调节聚合工艺参数的方法。
背景技术
聚酯纤维不仅弹性高、强度大,还具有良好的化学稳定性、耐磨性、拉伸性和抗折皱性,因此在民用纺织品和工业纤维品领域都有非常广泛的应用。聚合过程是聚酯纤维生产的主体和龙头,聚合过程的水平会直接影响产品的数量和质量。其中,熔体的特性粘度是直接体现聚合水平的指标。因此,对特性粘度的预测能为后续的生产环节提供一定的指导。
目前,国内外相关的理论研究主要是利用反应釜的温度、压强及流量等容易测得的变量作为输入,将特性粘度作为输出,利用支持向量机或人工神经网络等方法进行静态预测。然而实际生产数据是动态的,其具有一定的时序性,因而静态预测的准确率不高。所以针对特性粘度构成的时间序列进行分析是有必要的。粘度变化预测侧重于对粘度的走向进行预测,而并不局限于某个时间点的粘度值的精确预测。如生产人员能了解聚合过程中熔体的性能指标的变化,对指导生产是十分有帮助的,可以基于粘度变化相应调整工艺参数以优化其产品品质。因此,进行粘度变化的预测就显得更有意义。而现阶段关于这方面的研究在国内外还是空白。
信息粒化这一概念是由Fuzzy集创始人L.A.Zadeh在1979年首次提出的。L.A.Zadeh认为人类的认识和推理是由三个基本概念构成:粒化、组织和因果。粒化是将整体分解成部分,组织则是综合部分成为整体,因果是指因果关系。目前,国内外主要有三种信息粒化模型:基于模糊集理论的模型、基于粗糙集理论的模型和基于商空间理论的模型。用模糊集对时间序列进行模糊粒化,主要可以分为两个步骤:窗口划分和模糊化。窗口划分就是将所给的时间序列分割成一个个的小子列,作为一个个的操作窗口;而模糊化则是将第一步产生的每一个窗口进行模糊化,生成一个个模糊集,也就是模糊粒子。这两种广义模式结合在一起就是模糊信息粒化。模糊信息粒化可以将时间序列缩小为窗口序列,应用于对变化范围的预测。
传统的时序预测的方法是根据历史趋势预测未来时间序列的趋势,即通过建立相应的数学模型来拟合历史时间趋势曲线,并根据模型趋势曲线预测未来时间序列,常用的模型有自回归和移动平均模式、自回归综合移动平均模型、向量自回归模型、阈值自回归模型和自回归条件异方差模型等,但是它们只适用于处理线性或简单的非线性数据,无法应用于复杂非线性的工业生产数据;近年来随着深度学习的兴起,深层神经网络被广泛用于时序预测,但是它们的时间代价太高,硬件要求比较严格,不符合工业要求的实时性。
极限学习机是一种针对单隐含层前馈神经网络的新算法。极限学习机克服了传统的前馈神经网络训练速度慢、容易陷入局部极小值点和学习率参数的选择敏感的缺点,极限学习机随机产生输入层与隐含层的连接权值及隐含层神经元的阈值,且在训练过程中无需调整,只需要设置隐含层神经元的个数,其具有易于实现、速度快和泛化能力强的优点。然而,采用随机生成初始化参数的方式促使传统极限学习机算法模型不可避免地带来了隐含层节点冗余和预测结果波动性小的缺点,阻碍了它在高精度工程和高指标实验上的应用。因此,需要选择一种智能算法对输入层权重和隐含层阈值进行优化,提高模型的预测精度。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东华大学,未经东华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811221084.6/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理