[发明专利]一种智能无人机载视频监控方法有效

专利信息
申请号: 201811228576.8 申请日: 2018-10-22
公开(公告)号: CN109190602B 公开(公告)日: 2021-10-08
发明(设计)人: 王琦;李学龙;郭元戎 申请(专利权)人: 西北工业大学
主分类号: G06K9/00 分类号: G06K9/00
代理公司: 西北工业大学专利中心 61204 代理人: 常威威
地址: 710072 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 智能 无人 机载 视频 监控 方法
【权利要求书】:

1.一种智能无人机载视频监控方法,其特征在于步骤如下:

步骤1:对整个场景图像进行网格化划分,根据Lucas-Kanade光流算法计算得到每一帧图像相对于前一帧的光流;

步骤2:利用蔡瑞初等人2015年的工作“基于多尺度时间递归神经网络的人群异常检测[J].软件学报,2015,26(11):2884-2896”中的方法计算每个网格的多尺度光流直方图;

步骤3:将所有网格的多尺度光流直方图沿着通道方向合并,然后输入到多尺度时间递归神经网络,利用多尺度时间递归神经网络输出层定位异常发生的位置;所述的多尺度时间递归神经网络及网络参数均记载在蔡瑞初等人2015年的工作“基于多尺度时间递归神经网络的人群异常检测[J].软件学报,2015,26(11):2884-2896”中;

步骤4:利用无人机上图像分析模块得到的人群热点区域,利用双目相机测得人群热点区域到无人机当前位置的距离,利用三角函数计算得出热点区域位置相对于当前位置坐标;

步骤5:利用ORB特征对齐方法对图像进行特征对齐,并使用梯度下降法优化目标函数得到最终的位置转移矩阵T,其中,下标k代表图像帧数序列,u’i表示位置坐标,σI表示图像的像素值变化量;

步骤6:采用三角化方法对步骤1中的所有帧图像相对于参考帧进行深度估计,得到每一帧的深度值;所述的参考帧为每隔五帧选取一帧,即为参考帧;

步骤7:将所有深度值进行贝叶斯滤波,得到滤波之后的深度,然后利用步骤6得到的位置转移矩阵T和滤波之后的深度,将每帧点云图在3D空间中进行拼接,得到点云地图;

步骤8:对步骤7得到的点云地图进行栅格处理,得到立方体栅格地图,再对立方体栅格地图在垂直空间上进行切割,得到分层的地图,对每一幅分层的地图计算已经被占据的格子和没有被占据的格子比例,并选取比例最大的层,将该层作为传统平面栅格地图,得到平面化的栅格地图;所述的栅格处理具体为:栅格处理当点云落在某个栅格内,该栅格被认为已经被占据,设为1;当栅格内没有点云时,被认为是空,设为0;

步骤9:以无人机当前位置为起点,以步骤4计算的坐标为终点,利用邹亮等人2007年的工作“A*算法改进及其在动态最短路径问题中的应用[J].深圳大学学报理工版2007,24(1):32-35”中的A*算法对步骤8得到的平面化的栅格地图进行路径规划,得到无人机行进路径,无人机前往观察最佳地点。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811228576.8/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top