[发明专利]一种MoS2 有效
申请号: | 201811250748.1 | 申请日: | 2018-10-25 |
公开(公告)号: | CN109331844B | 公开(公告)日: | 2020-06-30 |
发明(设计)人: | 王金忠;赵思翔;苗靖晗;王东博;王琳;高世勇 | 申请(专利权)人: | 哈尔滨工业大学 |
主分类号: | B01J27/051 | 分类号: | B01J27/051;B01J35/02 |
代理公司: | 哈尔滨龙科专利代理有限公司 23206 | 代理人: | 高媛 |
地址: | 150000 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 mos base sub | ||
本发明公开了一种MoS2微球/PtCo合金纳米颗粒复合材料及其制备方法,所述MoS2微球/PtCo合金纳米颗粒复合材料以MoS2微球为基体材料,在MoS2微球表面负载PtCo合金纳米颗粒,具体制备步骤如下:首先通过水热法制备MoS2微球;然后通过PVP产生自组装所需的结合力;最后通过共还原的方式制备PtCo合金纳米颗粒,并使其负载于MoS2微球表面,得到MoS2微球/PtCo合金纳米颗粒复合材料。MoS2/PtCo合金纳米颗粒复合材料具有与铂相近的催化能力且含铂量很低,并具有强于铂的催化稳定性,这对代替主流的贵金属催化剂具有重要意义。
技术领域
本发明属于纳米材料制备技术领域,涉及一种MoS2微球/PtCo 合金纳米颗粒复合材料及其制备方法。
背景技术
二硫化钼(MoS2)作为一种新型的二维材料最早被应用于润滑领域。随着对其研究的深入,科研人员发现MoS2因其特殊的性质也可成为出色的光电、催化材料。根据以往的文献报道,MoS2已经在二维晶体管、锂离子电池、加氢脱硫催化及光催化制氢等领域都有了不错的应用。MoS2与石墨烯有相似的原子层结构,但是与石墨烯不同的是,组成MoS2的是三原子层而非单原子层,它是有两个硫原子包夹一个钼原子形成的原子层结构。正是由于这种结构使得MoS2拥有许多独特的化学位点,并且层上的载流子迁移速度是层间的2200倍。根据以往的文献报道,MoS2体材料表面是由热力学有利的原子平面组成,这些位置催化能力较弱。而MoS2原子层的边界具有催化活性很高的活性位点。一种材料的催化能力主要由两方面决定:(1)材料本身的固有催化能力;(2)材料上的活性位点数量。因此催化活性较高的MoS2在其表面(与反应物接触区域)应具有较多的活性位点数,即:在表面暴露更多的MoS2片层边界。
合金纳米颗粒是一种整体尺寸在纳米尺度的,两种或两种以上金属、金属与非金属组成的具有金属特性的材料。合金纳米颗粒具有明显区别于体合金与纯金属的性质:(1)由于价电子在不同元素原子核建立的势场中重新分布,实现了电子重构。(2)两种不同原子的错配能产生缺陷态,这可以丰富材料的催化活性位点;(3)第二种原子的加入可以提升材料的化学稳定性。目前复合催化材料发展迅速,并且应用于燃料电池、光催化制氢、染料敏化太阳能对电极,但是尚未有MoS2/PtCo合金复合材料的文献报道。
发明内容
本发明的目的是提供一种高催化活性的MoS2微球/PtCo合金纳米颗粒复合材料及其制备方法。本发明利用自组装的方式将PtCo合金纳米颗粒负载于MoS2微球上,构成一种含铂量极少的高催化活性复合材料,该材料具有与铂相近的催化能力且含铂量很低,并具有强于铂的催化稳定性,这对代替主流的贵金属催化剂具有重要意义。
本发明的目的是通过以下技术方案实现的:
一种高催化活性的MoS2微球/PtCo合金纳米颗粒复合材料,以 MoS2微球为基体材料,在MoS2微球表面负载PtCo合金纳米颗粒。
一种上述高催化活性的MoS2微球/PtCo合金纳米颗粒复合材料的制备方法,包括如下步骤:
一、配制浓度为4.0~6.0g/ml的PVP溶液80~100ml,并向其中分别加入0.95~0.10g钼酸钠和1.90~1.95g硫脲,得到混合溶液;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811250748.1/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法