[发明专利]基于长短时神经网络的多声部音乐生成方法及装置有效

专利信息
申请号: 201811257165.1 申请日: 2018-10-26
公开(公告)号: CN109346045B 公开(公告)日: 2023-09-19
发明(设计)人: 刘奡智;王义文;王健宗;肖京 申请(专利权)人: 平安科技(深圳)有限公司
主分类号: G10H1/32 分类号: G10H1/32
代理公司: 北京汇思诚业知识产权代理有限公司 11444 代理人: 冯晓平
地址: 518000 广东省深圳市福田区福*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 长短 神经网络 声部 音乐 生成 方法 装置
【说明书】:

发明实施例提供了基于长短时神经网络的多声部音乐生成方法及装置,本发明涉及人工智能技术领域,该方法包括:构建音乐生成模型,通过包括多个声部的音乐样本数据训练音乐生成模型,得到训练好的音乐生成模型的网络参数及多个声部的音符概率密度分布;获取用户输入的用于预生成多声部音乐的特征参数,特征参数包括预设音乐时长、预设节奏序列及预设延音序列;向训练好的音乐生成模型中依次输入多个声部的音符随机序列,以使音乐生成模型根据音符随机序列、网络参数及多个声部的音符概率密度分布生成匹配特征参数的多声部音乐。本发明实施例提供的技术方案能够解决现有技术中难以生成多个声部之间协调的音乐的问题。

【技术领域】

本发明涉及人工智能技术领域,尤其涉及一种基于长短时神经网络的多声部音乐生成方法及装置。

【背景技术】

音乐通常由多个音轨组成,并具有各自的时间动态,音乐会随着时间的推移而相互依存地展开。自然语言生成和单音音乐生成的成功不容易普及到多音轨的音乐。现有的音乐生成方法通常是单旋律音乐,因为多个旋律之间的复杂的相互影响,很难生成多旋律的音乐。

因此,如何生成多个声部之间协调的音乐成为目前亟待解决的问题。

【发明内容】

有鉴于此,本发明实施例提供了一种基于长短时神经网络的多声部音乐生成方法及装置,用以解决现有技术中难以生成多个声部之间协调的音乐的问题。

为了实现上述目的,根据本发明的一个方面,提供了一种基于长短时神经网络的多声部音乐生成方法,所述方法包括:构建音乐生成模型,所述音乐生成模型包括一个第一长短时神经网络、一个第二长短时神经网络、一个单隐藏层神经网络及一个依赖网络;通过包括多个声部的音乐样本数据训练所述音乐生成模型,得到训练好的所述音乐生成模型的网络参数及所述多个声部的音符概率密度分布;获取用户输入的用于预生成多声部音乐的特征参数,所述特征参数包括预设音乐时长、预设节奏序列及预设延音序列;向所述训练好的音乐生成模型中依次输入多个声部的音符随机序列,以使所述音乐生成模型根据所述音符随机序列、所述网络参数及所述多个声部的音符概率密度分布生成匹配所述特征参数的多声部音乐。

进一步地,在所述通过包括多个声部的音乐样本数据训练所述音乐生成模型之前,所述方法还包括:获取多个音乐训练样本,其中,所述音乐训练样本包括多个声部信息;提取每个声部的音符序列、所述音乐训练样本的节奏序列及延音序列;其中,所述每个声部的音符序列表示为:t∈[T],T为所述音乐训练样本的时长,是十六分音符的整数倍;i为声部;为当前时刻t的音符;将所述多个声部的音符序列、所述音乐训练样本的节奏序列及延音序列作为所述音乐样本数据。

进一步地,所述通过包括多个声部的音乐样本数据训练所述音乐生成模型,得到训练好的所述音乐生成模型的网络参数及所述多个声部的音符概率密度分布,包括:向所述音乐生成模型中输入所述音乐样本数据;获取所述音乐生成模型输出的每个声部的音符概率密度函数:其中,为当前时刻t的音符,为音符序列中除去当前音符剩下的所有音符;为所述节奏序列及延音序列;θi为所述依赖网络的参数;训练所述音乐生成模型使以下公式的值最大化:获取当所述公式的值最大时所述音乐生成模型的网络参数及所述多个声部的音符概率密度分布。

进一步地,所述向所述音乐生成模型中输入所述音乐样本数据之后,所述音乐生成模型的所述第一长短时神经网络接收每个声部的音符序列中当前时刻音符前的预设时长的第一音符序列,并根据所述第一音符序列输出第一参数至所述依赖网络;所述第二长短时神经网络接收每个声部的音符序列中所述当前时刻音符后的预设时长的第二音符序列,并根据所述第二音符序列输出第二参数至所述依赖网络;所述单隐藏层神经网络接收每个声部的音符序列中所述当前时刻音符并传递至所述依赖网络;所述依赖网络根据所述第一参数、所述第二参数及所述当前时刻音符输出所述每个声部的音符概率密度函数。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安科技(深圳)有限公司,未经平安科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811257165.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top