[发明专利]基于神经网络的条形码定位方法及系统在审

专利信息
申请号: 201811264575.9 申请日: 2018-10-29
公开(公告)号: CN109543486A 公开(公告)日: 2019-03-29
发明(设计)人: 谢巍;潘春文;张浪文;王缙 申请(专利权)人: 华南理工大学
主分类号: G06K7/14 分类号: G06K7/14;G06N3/04;G06N3/08
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 裴磊磊
地址: 511458 广东省广州市*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 条形码 定位方法及系统 后台服务器端 解码 解码结果 神经网络 图像 目标条形码 条形码内容 条形码区域 条形码识别 摄像头 定位区域 固定图像 后台处理 快速定位 网络传输 网络提取 旋转校正 检测 快递 尺度 摆放 发送 修正 分析
【说明书】:

发明公开了一种基于神经网络的条形码定位方法及系统,所述方法采用YOLO网络提取目标条形码的图像深层特征,并定位出条形码的区域,再对定位区域进行旋转校正,修正条形码区域,最后采用ZXing库对条形码内容进行解码并显示定位以及解码结果。所述系统采用前端交互、后台处理的方式运行;系统摄像头获取需要检测的图像,然后通过网络传输的方式发送至后台服务器端检测;后台服务器端采用所述条形码定位方法得到条形码的定位及解码结果后,将结果发回给前端。所述方法能够实现对不同尺度、摆放杂乱的快递面单上条形码的快速定位,并能对条形码进行分析解码,解决了现有技术中只是针对固定图像中条形码识别定位的问题。

技术领域

本发明涉及图像处理和深度学习技术领域,具体涉及一种基于神经网络的条形码定位方法及系统。

背景技术

近年来图像处理技术的发展与神经网络技术在图像处理上的发展与应用使得图像处理技术在各领域应用得更加方便与广泛,而这也使得物流扫码中在多种工作场景下对多尺度物流码进行识别定位成为可能。传统的图像处理技术是一种基于开发者先验知识的应用,开发者能根据特定场景对系统进行分析,设计出合理高效的方案,但场景变化容易导致系统出现失控。物流扫描工作中,场景的不同、使用人的工作习惯差异等会导致图像的特性出现许多差异,尺度变化较大,传统的图像处理方法较难设计出一个适用于各种情况下的系统。

另外,目前关于条形码的研究,尽管有了许多成果,但集中体现在研究对固定图像中的条形码识别定位技术,而针对实际情况中条形码的应用研究尤其是在物流上的应用研究是十分欠缺的。目前快递行业所使用的扫描器基本上都是基于1987年推出的手持式条码扫描器,外形很像超市收款员拿在手上使用的条码扫描器一样。手持式扫描枪绝大多数采用CIS技术,光学分辨率为200dpi,有黑白、灰度、彩色多种类型,其中彩色类型一般为18位彩色。也有个别高档产品采用CCD作为感光器件,可实现真彩色,扫描效果较好。但该扫码器的缺点是需要使用者手动对准条形码,影响了快递流程,这也是物流行业自动化中的一个挑战,因此,针对物流扫码工作中货物复杂,条形码尺度变化多端的情况,急需设计一种条形码定位方法及系统来解决该问题。

发明内容

本发明的目的是针对现有技术的不足,提供了一种基于神经网络的条形码定位方法,所述方法能够实现对不同尺度、摆放杂乱的快递面单上条形码的快速定位,并能对条形码进行分析解码,解决了现有技术中只是针对固定图像中条形码识别定位的问题。

本发明的另一目的在于提供一种基于神经网络的条形码定位系统。

本发明的目的可以通过如下技术方案实现:

一种基于神经网络的条形码定位方法,所述方法采用YOLO网络提取目标条形码的图像深层特征,并定位出条形码的区域,再对定位区域进行旋转校正,修正条形码区域,最后采用ZXing库对条形码内容进行解码并显示定位以及解码结果。

进一步地,所述YOLO网络采用卷积层作为网络模型的前端部分提取图像深层的抽象特征,并在最后使用全连接层将网络模型的输出转化成代表预测结果的张量,张量的大小为:S*S*(B*5+C),其中S*S为网格的数量,B为每个网格所预测的边界框个数,C为总共的类别数,在条形码预测工作中,所需的仅是预测出条形码这一类目标,所以这里的C为1。

进一步地,所述YOLO网络采用梯度下降的方式更新网络参数,也就是参数朝着损失函数负梯度的方向迭代更新,YOLO网络模型的损失函数为:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811264575.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top