[发明专利]人工耳蜗听觉场景识别方法在审

专利信息
申请号: 201811276582.0 申请日: 2018-10-30
公开(公告)号: CN109448702A 公开(公告)日: 2019-03-08
发明(设计)人: 樊伟;刘新东;刘根芳;魏清 申请(专利权)人: 上海力声特医学科技有限公司
主分类号: G10L15/02 分类号: G10L15/02;G10L15/06;G10L15/16;G10L15/26;G10L25/18;G10L25/45
代理公司: 上海申浩律师事务所 31280 代理人: 唐佳弟;秦华毅
地址: 201318 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 听觉场景 人工耳蜗 特征提取 程序模块 语音处理器 场景 预处理程序模块 预处理 信号处理模块 输出 场景识别 刺激信号 加窗处理 信号处理 音乐场景 语音信号 语音增强 噪声环境 可懂度 概率 分帧 预设 植入 匹配 运算 判定 相符
【权利要求书】:

1.一种人工耳蜗听觉场景识别方法,其包括如下步骤:(A)预处理程序模块将声音信号进行分帧与加窗处理;(B)特征提取程序模块将预处理后的声音信号进行特征提取;(C)场景识别程序模块将特征提取后的声音信号进行CNN运算,得出各预设场景的概率值,将概率值最大的场景判定为最终场景。

2.如权利要求1所述的人工耳蜗听觉场景识别方法,其特征在于:在步骤A中,该加窗处理使用Hamming窗或Hanning窗。

3.如权利要求2所述的人工耳蜗听觉场景识别方法,其特征在于:Hamming窗:其中,窗长N=256,帧移取128。

4.如权利要求1所述的人工耳蜗听觉场景识别方法,其特征在于:在步骤B中,该特征向量提取采用MFCC、FBank或语谱图。

5.如权利要求4所述的人工耳蜗听觉场景识别方法,其特征在于:Fbank的特征提取流程:对预处理输出的每一帧声音信号进行FFT变换:X[i,k]=FFT[xi(m)];对每一帧FFT后的数据计算谱线能量:E[i,k]=[xi(k)]2;计算Mel滤波器能量:其中,Hm(k)为Mel滤波器的频率响应,m为Mel滤波器个数,这里取40;取对数运算:Fbank=log[S(i,m)]。

6.如权利要求1所述的人工耳蜗听觉场景识别方法,其特征在于:在步骤C中,该CNN包括输入层,中间层及输出层,其中,该输入层为声音信号特征构成的二维数据矩阵,该中间层包括卷积输出层,池化输出层以及全连接输出层,该全连接输出层由一个一维数据组成,该池化输出层比该卷积输出层少一个。

7.如权利要求6所述的人工耳蜗听觉场景识别方法,其特征在于:池化处理采用Maxpooling或Meanpooling。

8.如权利要求7所述的人工耳蜗听觉场景识别方法,其特征在于:激活函数使用ReLU、sigmoid、tanh或Logistic,其中,ReLU公式:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海力声特医学科技有限公司,未经上海力声特医学科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811276582.0/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top