[发明专利]SiCMOSFET门极驱动电压控制电路及其控制方法有效
申请号: | 201811288609.8 | 申请日: | 2018-10-31 |
公开(公告)号: | CN109240408B | 公开(公告)日: | 2020-09-25 |
发明(设计)人: | 杨媛;文阳 | 申请(专利权)人: | 西安理工大学 |
主分类号: | G05F1/569 | 分类号: | G05F1/569 |
代理公司: | 西安弘理专利事务所 61214 | 代理人: | 谈耀文 |
地址: | 710048*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | sicmosfet 驱动 电压 控制电路 及其 控制 方法 | ||
本发明公开了,SiCMOSFET门极驱动电压控制电路,包括FPGA芯片,FPGA芯片分别连接有门极驱动级、电流检测电路、电压检测电路。本发明还公开了SiCMOSFET的门极驱动电压控制方法,该方法通过本发明第一种技术方案的SiCMOSFET门极驱动电压控制电路实现电压控制,具体包括在SiCMOSFET门极驱动电压控制电路中接入SiCMOSFET,并将FPGA芯片与开关连接,在开关打开或关断时,FPGA芯片控制门极驱动级输出不同的门极驱动电压,使SiCMOSFET完全导通或SiCMOSFET完全关断。本发明能够有效的抑制大功率SiCMOSFET高频应用中出现的过冲、振荡、EMI等问题。
技术领域
本发明属于SiCMOSFET驱动技术领域,涉及SiCMOSFET门极驱动电压控制电路,还涉及SiCMOSFET的门极驱动电压控制方法。
背景技术
随着电力电子技术的飞速发展,越来越多的应用对电力设备提出了新的要求,如更高的电流和电压、更高的功率密度和更高的效率。以更高的开关频率、更高的导热率、更高的操作温度和更低的开关和传导损耗为特点,SiCMOSFET有望逐渐用于满足这些要求。然而,快速切换速度和寄生元件引起的过射、振荡和电磁干扰(EMI)是其广泛应用的关键障碍。上述问题通常从三个方面来解决:1)减缓开关速度。通过增大门极电阻来降低开关速度可明显减轻开关应力、振荡,抑制EMI。但是,开关速度的降低会带来更多的开关损耗,延长开关时间。2)增加RC缓冲电路。采用RC缓冲电路抑制开关应力是一种常见方法,然而,较大的电气应力会转嫁到RC电路上。另一方面,较大体积的RC吸收电路增加了能量损失,降低了系统效率。3)优化结构布局。优化器件封装和减小功率回路杂散电感是最主要的两个方法。但是,新的封装技术成本较高且市场化时间较长。此外,大功率系统中,功率回路结构复杂不易于优化。
发明内容
本发明的目的是提供SiCMOSFET门极驱动电压控制电路,解决了现有大功率SiCMOSFET高频应用中过冲、振荡、EMI和开关损耗问题。
本发明的另一目的是提供SiCMOSFET的门极驱动电压控制方法。
本发明所采用的第一种技术方案是,SiCMOSFET门极驱动电压控制电路,其特征在于,包括FPGA芯片,FPGA芯片分别连接有门极驱动级、电流检测电路、电压检测电路;
电流检测电路包括均与FPGA芯片连接的电流上升沿检测电路和电流下降沿检测电路,电压检测电路包括与FPGA芯片依次连接的比较器CP3和阻容分压电路。
本发明第一种技术方案的特点还在于,
电流上升沿检测电路包括三极管T1,三极管的集电极和发射极分别连接有电阻R3和电阻R4,三极管T1的集电极还连接有比较器CP2,三极管T1与比较器CP2之间串联有电阻,比较器CP2又与FPGA芯片连接,三极管T1的基极接地,三极管T1的基极与发射极之间连接有二极管D2;
电流下降沿检测电路包括与FPGA芯片依次连接的比较器CP1和比例分压电路。
门极驱动级包括两个第一门极驱动器和第二门极驱动器,第一门极驱动器连接有门极电阻,FPGA芯片分别与第一门极驱动器和第二门极驱动器的输入端连接,且第一门极驱动器的供电电压高于第二门极驱动器的供电电压。
第一门极驱动器和第二门极驱动器的型号均为IXDN609SIA。
本发明所采用的第一种技术方案是,SiCMOSFET的门极驱动电压控制方法,该方法通过本发明第一种技术方案的SiCMOSFET门极驱动电压控制电路实现电压控制,具体包括以下步骤:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安理工大学,未经西安理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811288609.8/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种基准源
- 下一篇:电压调节器系统及其功率级和控制器