[发明专利]一种面向风电机组功率曲线数据的离群点判别方法有效
申请号: | 201811374105.8 | 申请日: | 2018-11-18 |
公开(公告)号: | CN109740175B | 公开(公告)日: | 2020-12-08 |
发明(设计)人: | 杨秦敏;鲍雨浓;陈积明;孙优贤 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06F30/20 | 分类号: | G06F30/20 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 刘静;邱启旺 |
地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 面向 机组 功率 曲线 数据 离群 判别 方法 | ||
1.一种面向风电机组功率曲线数据的离群点判别方法,其特征在于,包括以下步骤:
1)根据待评估风电机组功率曲线获取需求,读取相应需求周期内总计N条待评估风电机组的SCADA系统中测量得到的风电机组运行数据信息,该信息包含风速{vi}、有功功率{Pi}、桨距角{βi}、风电机组运行状态{Condi}、环境气压{Bi}以及环境温度{Ti},将信息数据集记为其中i=1,2,3,…,N;
2)将步骤1)中的信息数据集进行数据预处理操作,剔除机组异常运行状态并修正空气密度的影响,保留余下的N′条运行数据作为预处理后的风电机组正常数据集{Xi},其中i=1,2,3,…,N′;信息数据集进行的数据预处理操作流程如下:
2-a)基于信息数据集记为中的风电机组运行状态{Condi}信息进行异常运行状况检测并剔除异常点,记剔除异常点后的风电机组运行数据集为
2-b)利用步骤2-a)中的风电机组运行数据集为计算得出相应时刻的空气密度集{ρi},并将风电机组运行数据集中的风速{vi}修正替换为参考空气密度ρ0下的修正风速并记新数据集为风电机组正常数据集{Xi};
3)将步骤2)得到的正常数据集{Xi}中的风速信息以及功率信息{Pi}合成为功率曲线散点数据集{PCi},即其中i=1,2,3,…,N′;
4)对步骤3)得到的功率曲线散点数据集{PCi}中的风速信息以及功率信息{Pi}分别进行归一化,得到归一化功率曲线散点数据集{PCnorm,i},其中i=1,2,3,…,N′;
5)分别按照一定的风速间隔(ws)和功率间隔(ap)将步骤4)中的归一化功率曲线散点数据集各划分为M个区间,并分别记第j个区间中的数据个数为Mseg,j、归一化功率曲线散点数据集为其中seg={ws,ap},j=1,2,3,…,M,l=1,2,3,…,Mseg,j;归一化功率曲线散点数据集{PCnorm,i}的划分方法具体如下:
5-a)确定归一化功率曲线散点数据集{PCnorm,i}的区间划分个数M;
5-b)以为划分间隔,将数据集{PCnorm,i}按照风速进行均匀划分,则第j个风速区间的归一化功率曲线数据集定义为
其中Mws,j为第j个风速区间归一化功率曲线数据集中的数据个数;
5-c)以为划分间隔,将数据集{PCnorm,i}按照功率进行均匀划分,则第j个功率区间的归一化功率曲线数据集定义为
其中Map,j为第j个功率区间归一化功率曲线数据集中的数据个数;
6)利用均值距离判别(AVDC)离群点检测算法分别对步骤5)中的2M个区间进行疑似离群点检测,并分别记第j个区间的疑似离群点个数为归一化功率曲线疑似离群点集为其中seg={ws,ap},j=1,2,3,…,M,l=1,2,3,…,Mseg,j;
所述均值距离判别(AVDC)离群点检测算法具体为:对于数据个数Mseg,j小于给定最小阈值δM的区间,认为该区间归一化功率曲线疑似离群点集为否则对于第j个风速区间或第j个功率区间,首先计算区间内归一化功率曲线数据集中各数据点的判别距离进一步设定疑似离群点的占比并确定第j个区间中疑似离群点个数通过由大到小对判别距离进行排序的方式确定前个数据构成第j个区间的归一化功率曲线疑似离群点集
所述判别距离的计算方式具体如下:
其中分别为第j个风速区间内归一化功率曲线数据集的功率平均值和第j个功率区间内归一化功率曲线数据集的风速平均值,l=1,2,3,…,Mseg,j;
7)分别利用局部异常因子(LOF)以及考虑噪声的基于密度的聚类(DBSCAN)这两种离群点检测算法对步骤5)中的2M个区间进行判别离群点检测,并分别记第j个区间的判别离群点个数为归一化功率曲线判别离群点集为其中seg={ws,ap},j=1,2,3,…,M,l=1,2,3,…,Mseg,j,method={LOF,DBSCAN};
8)基于真实离群点判别准则,从步骤6)的功率曲线疑似离群点集和步骤7)的功率曲线判别离群点集中获取真实离群点集其中seg={ws,ap},j=1,2,3,…,M,method={LOF,DBSCAN};
所述真实离群点判别准则定义为:对于第j个区间的归一化功率曲线数据集中的任一数据点Q,若其属于疑似离群点集并且属于LOF判别离群点集或DBSCAN判别离群点集之一,则点Q为第j个区间的真实离群点;
9)基于步骤8)中得到的各风速区间真实离群点集以及各功率区间真实离群点集利用最终离群点判断准则获得功率曲线散点数据集{PCi}的最终离群点判别结果集{Outlier},作为最终离群点判别结果;
所述最终离群点判断准则定义为:对于功率曲线散点数据集{PCi}中的任一数据点Q′,若其在归一化功率曲线散点数据集{PCnorm,i}中对应的数据点Q是某风速区间的真实离群点或某功率区间的真实离群点,则点Q′为功率曲线散点数据集{PCi}的最终离群点。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811374105.8/1.html,转载请声明来源钻瓜专利网。