[发明专利]一种合欢皮识别平台和利用该平台的合欢皮识别方法在审

专利信息
申请号: 201811418023.9 申请日: 2018-11-26
公开(公告)号: CN111222524A 公开(公告)日: 2020-06-02
发明(设计)人: 张晓哲;赵楠;程孟春 申请(专利权)人: 中国科学院大连化学物理研究所
主分类号: G06K9/62 分类号: G06K9/62;G06K9/34;G16H20/10
代理公司: 北京元周律知识产权代理有限公司 11540 代理人: 周游
地址: 116023 *** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 合欢 识别 平台 利用 方法
【说明书】:

本申请公开了一种合欢皮识别平台,以及应用该平台来识别合欢皮的方法。该平台包括已知样本信息数据库模块、未知样本信息数据库模块、已知样本色谱‑质谱图像模块、未知样本色谱‑质谱图像模块、未知样本识别模块。通过将生成的未知样本的色谱‑质谱数据图像与已知样本的色谱‑质谱数据图像进行比对,来确定未知样本的色谱‑质谱数据是否与已知样本的色谱‑质谱数据匹配,从而识别未知样本。本发明运用中药色谱‑质谱高维图像技术,能够对合欢皮样本中大量化合物间的空间信息实现全面表征,并利用上述空间信息实现未知样本的匹配与识别,具有快速、高通量、高精度和高可靠性等优势。

技术领域

本申请涉及中药检测技术领域,具体涉及一种合欢皮识别平台和合欢皮识别方法。

背景技术

复杂样本的化合物构成具有极端复杂性。中药即是典型的复杂样本,所含成分极其复杂,结构多样、种类繁多,常见类型包括酚类、生物碱类、皂苷类、萜类、黄酮类、内酯类、蒽酮类、有机酸类以及鞣质类等,单一中药即包含数百上千计的次生代谢产物和小分子成分,由多种中药组合的中药复方制剂的成分则更多。相应地,复杂样本中蕴含海量信息。如中药化合物之间的相互关系、不同中药的药性药效差异、同属药材化学成分异同及产地、年份、生长环境对药材质量的影响等科学问题都蕴藏其中。

目前对于复杂样本的研究面临两个重要瓶颈:一方面,研究大多采用碎片化、点状的低维数据,如色谱保留时间,m/z值,子离子碎片信息等,这些低维数据忽视也无法体现上述大量化学成分间的关联。高维数据恰是海量信息的有力载体。与低维数据相比,高维数据能够有效地表示样本中各数据点的空间信息从而反映它们的空间关系。因此,获取复杂样本化合物的高维数据才能真正实现从复杂样本中得到、处理、挖掘那些高价值信息。另一方面,实验产生的数据资源庞大却零散,相关研究产生的数据不能整合利用,导致科研工作中人力、物力、时间等投入的成本高,产出却不显著。数据库技术是一种计算机辅助管理、整合数据的方法。将高维数据与数据库技术结合建立高维数据数据库正是解决上述难题的方向。

高维数据的获取需要联用仪器来实现。色谱-质谱联用技术将应用范围极广的分离方法-色谱法与灵敏、专属、能提供分子量和结构信息的质谱法结合起来,显然是复杂样本高维数据获取的理想手段。目前,已有一些基于色谱-质谱联用技术的数据库,大致可以分为两类:

1.标准化合物质谱数据库:如美国国家科学技术研究院(NIST)出版的NIST标准化合物质谱数据库,收录了几万张标准质谱图,在以GC-MS平台的代谢组学研究中发挥巨大作用;又如人类代谢组数据库(Human Metabolome Database,HMDB)是目前最完整且最全面的人类代谢物和人类代谢数据库。这类数据库在许多研究领域得到了广泛的应用。然而该类型数据库能够提供的化合物数目是有限的,并且没有提供化合物的色谱保留信息。张加余等(药学学报,2012,47(9):1187-1192)利用高效液相-电喷雾离子阱串联质谱(HPLC-ESIIT-MS/MS),以商业化工作站谱库编辑程序为平台建立了含有636个天然化合物(包括黄酮、香豆素、木质素、萜及其苷类、甾体及其苷类、有机酸、生物碱、蒽醌、氨基酸等常见类型的天然产物)的液相色谱-质谱-数据库(LC-MS-DS),用于天然产物未知组分的鉴定和靶向分离。该数据库属于标准化合物质谱数据库,且可通过匹配未知组分和对照品的保留时间、紫外吸收光谱或者比较未知组分和对照品的多级质谱图中主要离子碎片是否相同来评价谱库检索的可信度,从而提高结果的可信度。该数据库仅能用作化合物的鉴定,无法用于包括天然产物在内的生物样本的鉴定。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院大连化学物理研究所,未经中国科学院大连化学物理研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811418023.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top