[发明专利]一种针对恐怖袭击事件的数据挖掘系统有效

专利信息
申请号: 201811419743.7 申请日: 2018-11-26
公开(公告)号: CN109582743B 公开(公告)日: 2021-06-25
发明(设计)人: 马璐璐;赵丽丽;王彩雨;王峰;俞凤萍;张伟;闫晓燕;胡斌 申请(专利权)人: 山东师范大学
主分类号: G06F16/28 分类号: G06F16/28;G06F16/215;G06Q50/26
代理公司: 济南圣达知识产权代理有限公司 37221 代理人: 黄海丽
地址: 250358 山东省*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 针对 恐怖袭击 事件 数据 挖掘 系统
【说明书】:

本公开公开了一种针对恐怖袭击事件的数据挖掘方法,对每个历史事件的历史数据进行处理得到若干个历史数据点;对待预测事件的待测数据进行处理得到待测数据点;对得到的所有历史数据点进行降维处理;对降维处理后的结果进行子空间聚类,通过子空间聚类获得不同维度的历史数据类簇;计算待测数据点与历史数据类簇中每个数据对象之间的距离,把待测数据点到对应类簇中最近的数据对象的距离作为待测数据点到类簇的距离,如果待测数据点到类簇的距离在设定范围内,则匹配成功,否则匹配失败;最后,针对匹配成功的待测数据点,按照待测数据点到类簇的距离从小到大进行排序,排序靠前的M个历史事件的犯罪团伙的名称作为输出值输出。

技术领域

本公开涉及数据分析挖掘技术领域,特别是涉及一种针对恐怖袭击事件的数据挖掘方法。

背景技术

本部分的陈述仅仅是提高了与本公开相关的背景技术,并不必然构成现有技术。

自二十世纪九十年代以来,各种规模不等的恐怖袭击在世界多地发生,有在全球范围内迅速蔓延的趋势,提醒人们不能忽视恐怖主义对人类的威胁。所以相关安全部门十分重视恐怖组织与恐怖袭击事件数据的搜集和相关数据库的建设,同时基于相关数据库在数据挖掘方面进行了一系列的研究。

数据挖掘是一种在大型数据存储库中自动发现有用信息的过程,一般包括数据预处理、数据挖掘和后处理几部分。目前相关领域关于数据挖掘的应用非常多,但是,根据以往恐怖袭击事件的特征,挖掘恐怖袭击事件与犯罪团伙的相关关系方法尚未有成熟的结果和说明。当今社会,经济迅速发展的同时犯罪率也在逐步上升,且有多起恐怖袭击事件作案者尚未确定。如果将可能是同一个恐怖组织或个人在不同时间、不同地点多次作案的若干特征串联起来,不仅有助于统一组织侦查提高破案效率,而且可以尽早发现新生或者隐藏的恐怖分子。因此利用数据挖掘技术解决此类问题就显得尤为重要,为后期犯罪团伙的筛选提供客观依据。

综上所述,利于数据挖掘技术,发现恐怖袭击事件与犯罪团伙的相关关系,提升相关模型性能,尚缺乏有效的解决方案。

发明内容

为了解决现有技术的不足,本公开提供了一种针对恐怖袭击事件的数据挖掘方法,本发明根据所给数据,对其进行数据分析、数据清洗和特征提取,从原始数据中获得更多信息和更好的训练数据,根据所得级别结合现有特征进行子空间聚类,确定犯罪集团类别,进一步分析恐怖袭击案件与犯罪团伙的相关度。

第一方面,本公开提供了一种针对恐怖袭击事件的数据挖掘方法;

一种针对恐怖袭击事件的数据挖掘方法,包括:

步骤(1):对每个历史事件的历史数据进行处理得到若干个历史数据点;每个历史事件都具有唯一的编号;所述对历史数据进行处理包括:对历史数据进行特征提取和对历史数据作案动机进行量化处理;每个历史数据点是包括每个历史事件对应历史数据的提取特征的特征值和作案动机量化值形成的N*1维向量;

步骤(2):对待预测事件的待测数据进行处理得到待测数据点;对待测数据进行处理,包括:对待测数据进行特征提取和对待测数据作案动机进行量化处理;待测数据点是包括待预测事件对应位置数据的提取特征的特征值和作案动机量化值形成的N*1维向量;

步骤(3):对步骤(1)得到的所有历史数据点进行降维处理;对降维处理后的结果进行子空间聚类,通过子空间聚类获得不同维度的历史数据类簇;

步骤(4):计算待测数据点与历史数据类簇中每个数据对象之间的距离,把待测数据点到对应类簇中最近的数据对象的距离作为待测数据点到类簇的距离,如果待测数据点到类簇的距离在设定范围内,则匹配成功,否则匹配失败;最后,针对匹配成功的待测数据点,按照待测数据点到类簇的距离从小到大进行排序,排序靠前的M个历史事件对应犯罪团伙的名称作为输出值输出。

作为一些可能的是实现方式,所述步骤(1)的对历史数据进行特征提取的具体步骤为:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东师范大学,未经山东师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811419743.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top