[发明专利]通信设备电源故障分析的方法、装置、设备及存储介质有效
申请号: | 201811422339.5 | 申请日: | 2018-11-27 |
公开(公告)号: | CN109309594B | 公开(公告)日: | 2021-11-16 |
发明(设计)人: | 朱卫锋;赵越;孙宏 | 申请(专利权)人: | 中国联合网络通信集团有限公司 |
主分类号: | H04L12/24 | 分类号: | H04L12/24 |
代理公司: | 北京同立钧成知识产权代理有限公司 11205 | 代理人: | 吴会英;刘芳 |
地址: | 100033 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 通信 设备 电源 故障 分析 方法 装置 存储 介质 | ||
本发明提供了一种通信设备电源故障分析的方法、装置、设备及存储介质。该方法包括:获取通信设备故障恢复后的日志关键信息;对日志关键信息进行清洗,获得退服类活动告警信息和清除告警信息相对应的清洗后数据集;提取清洗后数据集中的特征信息;利用训练后的故障分析模型对清洗后数据集的特征信息进行分析处理,以获得退服告警信息和电源故障概率。能够通过主动获取日志关键信息,并通过故障分析模型快速分析出通信设备的电源故障概率,提高了电源故障的分析效率。
技术领域
本发明实施例涉及通信设备技术领域,尤其涉及一种通信设备电源故障分析的方法、装置、设备及存储介质。
背景技术
针对无线通信设备的电源问题,现有技术主要基于动环监控系统进行分析,而现网无线通信设备中有60%的通信设备无法通过动环监控分析电源故障,主要还是依耐于人工方式对故障处理后的结果进行分析,电源故障概率分析上数据准确性较低,且无法将分析结果及时应用于电源故障诊断。
无线通信设备的故障日志仅存在设备后端,属于被动查询,需要工程师在故障发生后,登陆设备侧通过命令方式进行查询,电源故障分析效率低。
发明内容
本发明实施例提供一种通信设备电源故障分析的方法、装置、设备及存储介质,解决了现有技术中的通信设备电源故障分析方法中电源故障分析效率低的技术问题。
第一方面,本发明实施例提供一种通信设备电源故障分析的方法,包括:
获取通信设备故障恢复后的日志关键信息;
对所述日志关键信息进行清洗,获得退服类活动告警信息和清除告警信息相对应的清洗后数据集;
提取所述清洗后数据集中的特征信息;
利用训练后的故障分析模型对清洗后数据集的特征信息进行分析处理,以获得退服告警信息和电源故障概率。
进一步地,如上所述的方法,利用训练后的故障分析模型对清洗后数据集的特征信息进行分析处理,以获得退服告警信息和电源故障概率之前,还包括:
利用贝叶斯算法构建所述故障分析模型;
采用训练集对所述故障分析模型进行训练,以获得训练后的故障分析模型;
其中,所述故障分析模型中至少包括:第一模型和第二模型,所述第一模型为单小区退服时间与供电异常概率模型,所述第二模型为多小区退服时间与供电异常概率模型。
进一步地,如上所述的方法,所述利用训练后的故障分析模型对清洗后数据集的特征信息进行分析处理,以获得退服告警信息和电源故障概率之后,还包括:
利用拉普拉斯算法对获取到的退服告警信息和电源故障概率进行修正。
进一步地,如上所述的方法,所述利用训练后的故障分析模型对清洗后数据集的特征信息进行分析处理,以获得退服告警信息和电源故障概率之后,还包括:
获取所述通信设备故障的历史时间和所述特征信息;
根据所述历史时间确定距离当前时刻的最短时间长;
利用预设的人工神经网络模型对所述电源故障概率、所述最短时间长和所述特征信息进行分析处理,判断电源是否故障。
进一步地,如上所述的方法,所述判断电源是否故障之后,还包括:
若利用所述训练后的故障分析模型所获取的电源故障概率大于或等于预设的概率阈值,且利用所述人工神经网络模型所获取的判断结果为电源故障,则确定所述通信设备的电源发生故障;
若利用所述训练后的故障分析模型所获取的电源故障概率小于预设的概率阈值,且利用所述人工神经网络模型所获取的判断结果为电源非故障,则确定所述通信设备的电源未发生故障。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国联合网络通信集团有限公司,未经中国联合网络通信集团有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811422339.5/2.html,转载请声明来源钻瓜专利网。