[发明专利]一种基于社交网络数据的药品不良事件信息提取方法有效

专利信息
申请号: 201811444462.7 申请日: 2018-11-29
公开(公告)号: CN109657158B 公开(公告)日: 2022-09-23
发明(设计)人: 由丽萍;李朝翻 申请(专利权)人: 山西大学
主分类号: G06F16/9536 分类号: G06F16/9536;G06F16/36;G06F16/35;G16H50/70;G06Q50/00
代理公司: 太原晋科知识产权代理事务所(特殊普通合伙) 14110 代理人: 任林芳
地址: 030006 山*** 国省代码: 山西;14
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 社交 网络 数据 药品 不良 事件 信息 提取 方法
【说明书】:

发明公开了一种基于社交网络数据的药品不良事件信息提取方法,该方法包括以下步骤:抓取社交网络患者用药反馈文本;对评论文本进行数据预处理;对评论文本进行句法分析;对评论文本中的谓词进行语义类识别;识别评论文本中谓词所支配的主体语义角色;计算程度值;填充药品不良事件模板。本发明适用于药品不良事件信息的提取,药物种类不限;能够有效分析患者用药后的反馈信息,为药品的生产、经营、使用及药政部门的管理提供药品不良事件的咨询,利于业务的开展和管理的提高。

技术领域

本发明属于信息抽取技术领域,具体地说,涉及一种基于社交网络数据的药品不良事件信息提取方法。

背景技术

药品不良事件(adverse drug event,简称ADE)是指服用药物治疗疾病过程中所发生的不幸的医疗卫生事件,是由药物引起或与药物相关的患者机体损害。药品不良事件的原因包括药品标准缺陷、药品不良反应、药品质量问题、药品滥用以及用药失误。在概念范围上药品不良事件大于药品不良反应,有些药品不良事件不一定与药物治疗存在因果关系。在涉及的机构和人群方面,药品不良事件涉及到生产和研究者、监管者、流通商、医生、护士、药师、患者或消费者。本着“可疑即报”的原则,将传统的药品不良反应监测延伸至药品不良事件监测,对用药期间出现的各种医学事件都进行监督,可以更大程度地降低用药风险。

尽管药品上市前会进行临床实验分析,医院在临床使用过程中也有相应的集中监测上报制度,但是受到时间、检测对象等限制,,数据代表性差,得出的分析结果无法覆盖所有的药品不良事件,导致药品不良事件被低报或漏报,从而造成无法全面认知药品副作用和安全性注意事项。因此,利用社交网络数据提取药品不良事件信息可以作为现有药物不良事件呈报系统的补充,作为药品安全性和有效性管理工作的重要参考,具有重要的理论价值和现实意义。

发明内容

本发明的技术解决方案:一种基于社交网络数据的药品不良事件信息提取方法,包括以下基本步骤:

从社交网络中抓取网上患者对药物的评论文本,以字符形式存储,并对获取的药物评论文本数据进行预处理;

根据依存语法体系,对评论文本进行句法分析,将句法结构描述为一个支配词及其从属成分构成的树结构,并标注主语、谓语、定语的依存关系;其中,所述支配词是谓语中心语;

确定依存句法结构中每一药物评论文本中处于支配地位的谓词,对谓词进行语义类识别,并依据预设规则标注谓词所支配的主体语义角色;其中,所述主体语义角色是从属于谓词的名词性短语、且在语义关系上是动作行为或性状描述的主体;

依据对药物评价文本的标注情况,确定药物评价描述的程度值,并将程度值填充入药品不良事件模板。

其中,在从社交网络中抓取网上患者对药物评论文本的步骤中,是利用爬虫技术从博客、微博、在线评论的社交网络中抓取。

其中,在对获取的用药物评论文本数据进行预处理的步骤中,预处理的步骤包括:

识别药物评论文本对应的评论者名称和URL标识,对药物评论文本进行分词和词性标注,识别药物评价文本中包含的药品名称;

对药物评论文本进行断句处理,以“,?!。”为标志,将文本切分为语块;

将药品名及其对应的评论语块存储于数据库。

其中,在确定依存句法结构中每一药物评论文本中处于支配地位的谓词的步骤中,谓词包括形容词、动词、成语和习用语,其句法功能包括主谓结构的谓语、述宾结构的述语、述补结构的补语和定中结构的中心语;对谓词进行语义类识别是根据语义分类词典进行识别。

其中,在依据预设规则标注谓词所支配的主体语义角色的步骤中,预设规则为:

若药物评价文本只有一个谓词,则不标注语义角色;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山西大学,未经山西大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811444462.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top