[发明专利]一种基于深度学习的加密图像破解方法及系统有效

专利信息
申请号: 201811484733.1 申请日: 2018-12-06
公开(公告)号: CN109769080B 公开(公告)日: 2021-05-11
发明(设计)人: 贺晨;明刊;王永威;苏剑颖;张汉卿;王真 申请(专利权)人: 西北大学
主分类号: H04N1/44 分类号: H04N1/44;G06N3/04
代理公司: 西安长和专利代理有限公司 61227 代理人: 黄伟洪
地址: 710127 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 学习 加密 图像 破解 方法 系统
【权利要求书】:

1.一种基于深度学习的加密图像破解方法,其特征在于,所述基于深度学习的加密图像破解方法包括:

步骤一:获取加密图像样本,原始图像从各大开源的数据集获取,根据Arnold cat和AES加密算法编写代码加密数据集,得到加密图像样本;

步骤二,在Autoencoder自编码器和Gan生成对抗网络的基础上构建深度学习网络模型;根据Autoencoder自编码器和Gan生成对抗网络构建深度学习网络模型,包括生成网络和对抗网络,其中,生成网络需要将加密图像以原始图像为目标进行还原,是基于Autoencoder自编码器构建的,对抗网络是一个判别器,用来判断所输入的图像是原始图像还是生成网络所生成的图像,两个网络同时竞争,让生成网络生成的图像和原始图像越来越接近;生成网络基于Autoencoder自编码器进行设计,其中,encoder编码过程包括6个卷积层,前5个卷积层后接一个Relu型激励函数,后1个卷积层后接一个Sigmoid型激励函数;decoder解码过程包括有6个反卷积层,前5个反卷积层都后接一个Relu型激励函数;对抗网络包括6个卷积层和1个全连接层,每个卷积层都后跟1个LeakyRelu型激励函数和一个池化层;

步骤三,训练深度学习网络,对抗网络的训练,使用二分类的交叉熵损失函数,训练判别器能够辨别原始图像和生成网络生成的图像;将原始图像的标签设置为1,生成网络生成的图像的标签设置为0,将原始图像和生成网络生成的图像分别输入到对抗网络中,将结果与标签对应,并计算对应的误差,将二者的误差相加并反向传播,不断修正对抗网络的参数,让对抗网络越来越能够分辨原始图像和生成图像;

其次是生成网络的训练,使其所生成的图像越来越逼近原始图像;将判别器固定,将生成图像输入判别器的结果与原始图像的标签1进行对应,并计算误差,在反向传播的过程中,不断修正生成网络的参数,使生成图像越来越接近原始图像,实现加密图像的破解;

步骤四,使用训练好的网络模型对加密图像进行破解,用所训练好的网络模型对加密图像进行破解;加密图像输入网络模型,通过计算,模型所产出的结果就是加密图像的原始图像;

在Autoencoder自编码器和Gan生成对抗网络的基础上构建深度学习网络模型,同时训练生成网络和对抗网络,生成网络输出的图像越来越接近原始图像,实现对Arnold cat和AES加密算法所加密的图像的破解。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北大学,未经西北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811484733.1/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top