[发明专利]一种基于脊柱超声冠状面图像的自动化椎体识别方法有效

专利信息
申请号: 201811529726.9 申请日: 2018-12-14
公开(公告)号: CN109360213B 公开(公告)日: 2020-10-30
发明(设计)人: 姜娓娓;钟鑫鑫;高情毓;刘天健;朱永坚;杨克己 申请(专利权)人: 浙江工业大学
主分类号: G06T7/11 分类号: G06T7/11;G06T7/50;G06T7/00;G06K9/46
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310014 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 脊柱 超声 冠状 图像 自动化 识别 方法
【说明书】:

一种基于脊柱超声冠状面图像的自动化椎体识别方法,所述方法包括以下步骤:1)利用超声图像分割技术实现目标脊柱节段超声图像中椎体的逐节分割;2)根据特征性解剖结构、特征椎体和椎体特征结构予以识别,并根据特征性解剖结构判断识别特征椎体,再由特征椎体推算其他椎体;3)通过特征性解剖结构和椎体特征进行验证校准。本发明兼顾超声骨质图像特征的准确与高效识别,以原创性脊柱超声图像分割技术方法,识别脊柱不同节段脊椎的特征性解剖结构,并由此判断识别特征椎体,进而按照脊柱长轴方向,由特征椎体计数推导其它椎体,直至目标手术节段,最后通过双向计数推导识别特征性解剖结构和特征椎体,完成识别验证与校准。

技术领域

本发明属于医学图像处理领域,涉及一种基于脊柱超声冠状面图像的自动化椎体识别方法。

背景技术

随着计算机导航系统的蓬勃发展,脊椎脊髓术中导航日益得到广泛关注,其通过精准定位有望极大解决脊柱脊髓相关手术,尤其微创手术中的定位难题,降低技术门槛进而促进这一先进技术的推广和普及。与此同时,为解决当前主流导航技术中的辐射损害,基于超声图像的导航方法逐渐成为业内研究热点。尽管超声具有无损伤、无辐射、实时和经济等诸多优势,但其对骨质结构存在较大的衰减和衍射,导致图像有效信息少而无效噪声多。因此,如何提高超声骨质图像质量,使其满足术中导航所需的精度,成为促进超声导航临床应用的关键所在。

基于现有主要技术思想,提升超声骨质图像质量的主要方法有二。第一是超声成像技术,即从超声成像原理出发,通过调整成像参数、处理声波等对底层原始数据处理,进而改变超声成像技术特征,实现对骨质结构成像的优化。基于成像技术的调整有望从根本上解决超声骨质成像这一技术难题,但底层原始数据量过于庞大,目前尚缺少完备的技术模型和相应程序算法支持,因此,从原理技术层面,将面对极高难度、较长周期的挑战,距离实际临床可用性尚为遥远。第二是图像处理技术,基于目前临床应用较成熟的超声导航技术,通过图像分割识别特征性区域、结构,进而图像融合匹配,完成定位导航是可行的,相关技术路线在人体肝脏、甲状腺、乳腺等器官均已得到应用。然而,相比上述器官组织,人体脊柱结构更为复杂,使本身并不“擅长”骨质成像的超声技术越发受限。脊柱具有多节段、多曲度、多形态的总特征,人体脊柱可分为颈、胸、腰、骶四部分,具体包括7节颈椎,12节胸椎,5节腰椎和5节合一的骶椎,构成脊椎的基本解剖结构还包括棘突、横突、关节突、椎板、椎弓根等,且不同节段脊椎的结构存在较大差异,若直接根据当前脊柱超声图像,采用已有图像分割算法进行处理,将无法得到临床可用的处理结果。

医学图像分割的主流技术思路是,基于图像灰度、文理、亮度、对比度等特征,识别被分割目标的感兴趣区域和特征性解剖结构,在此过程中所面临的挑战主要在于图像伪影的识别处理、灰度相近的不同组织结构的边界识别提取、图像边缘等成像不清晰部位的精确拟合等。与此同时,随着人工智能和机器学习算法的日益发展,通过确定数学模型,建立学习集,基于卷积神经网络的深度学习算法有望实现脊椎节段的准确识别与分割。遗憾的是,至今尚无成熟的模型和算法得到应用,其主要难点在于学习集全面性与高效性的矛盾,有监督分割的繁琐性与无监督分割的可靠性矛盾。因此,目前尚无针对人体脊柱超声图像的有效分割方法,能够兼顾超声骨质图像特征的准确与高效识别。

发明内容

为了克服已有技术尚无针对人体脊柱超声图像的有效分割的不足,本发明提供了一种兼顾超声骨质图像特征的准确与高效识别的基于脊柱超声冠状面图像的自动化椎体识别方法,以原创性脊柱超声图像分割技术方法,识别脊柱不同节段脊椎的特征性解剖结构,并由此判断识别特征椎体,进而按照脊柱长轴方向,由特征椎体计数推导其它椎体,直至目标手术节段,最后通过双向计数推导识别特征性解剖结构和特征椎体,完成识别验证与校准。

本发明解决其技术问题所采用的技术方案是:

一种基于脊柱超声冠状面图像的自动化椎体识别方法,所述方法包括以下步骤:

1)利用超声图像分割技术实现目标脊柱节段超声图像中椎体的逐节分割;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811529726.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top