[发明专利]一种结合道路网络拓扑结构与语义关联的拥堵指数预测方法有效

专利信息
申请号: 201811552071.7 申请日: 2018-12-19
公开(公告)号: CN109636049B 公开(公告)日: 2021-10-29
发明(设计)人: 吕明琪;洪照雄;徐威;陈铁明 申请(专利权)人: 浙江工业大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/30;G06N3/04;G06N3/08
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310014 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 结合 道路 网络 拓扑 结构 语义 关联 拥堵 指数 预测 方法
【权利要求书】:

1.一种结合道路网络拓扑结构与语义关联的拥堵指数预测方法,其特征在于,所述方法包括以下步骤:

(1)道路网络拓扑结构图构建:基于道路网络的空间拓扑结构建立一个无向图;

(2)道路网络语义关联图构建:首先计算道路历史拥堵指数数据间相似度,然后基于该相似度建立一个加权无向图,最后对该加权无向图进行嵌入得到表征道路的语义向量;

(3)基于混合深度神经网络的预测模型构建:基于图卷积网络抽取短期拥堵指数变化特征,基于循环神经网络抽取长期拥堵指数变化特征,在此基础上融合道路语义向量建立预测模型;

所述步骤(1)中,道路网络拓扑结构图构建的过程如下:

(1-1)道路网络拓扑结构图建立:首先,将道路网络中每条道路Ri创建为一个节点;然后,若车辆能从道路Ri直接到达道路Rj或从道路Rj直接到达道路Ri,则在节点Ri和节点Rj之间创建一条边,记最后建立的无向图为TG;

(1-2)道路网络拓扑结构图表示:采用一个邻接矩阵表示TG;

所述步骤(2)中,道路网络语义关联图构建的过程如下:

(2-1)历史拥堵指数向量距离计算:对每条道路Ri,首先,对Ri的历史拥堵指数按周进行分割;然后,对Ri每周的历史拥堵指数进行平均,得到历史拥堵指数向量CVi;最后,基于DTW算法(动态时间归整算法)计算任意两个历史拥堵指数向量CVi和CVj的距离dist(CVi,CVj);

(2-2)道路网络语义关联图建立:首先,将任意两个历史拥堵指数向量的距离dist(CVi,CVj)转化为相似度sim(CVi,CVj)=exp(-dist(CVi,CVj));然后,将道路网络中每条道路Ri创建为一个节点,若sim(CVi,CVj)相似度阈值δ,则在节点Ri和节点Rj之间创建一条边,其权重wij=sim(CVi,CVj);记最后建立的加权无向图为SG;

(2-3)道路语义向量生成:采用图嵌入算法对SG进行表征学习,得到表征每条道路的k维语义向量,则整个道路网络的语义矩阵为SM,其中,SM的维度为N×k;

所述步骤(3)中,基于混合深度神经网络的预测模型构建的过程如下:

(3-1)训练样本集构建:假定训练样本St,当前时刻为t,预测间隔为g,则St=(WDt,Xt),其中,WDt为St的数据部分,跨度为一周,表示为一个N×(168×d1)维的矩阵,其中,d1为每条道路在1小时内的拥堵指数采样个数,WDt[i]代表道路Ri在t前一周的拥堵指数向量,Xt为St的标注部分,表示为一个N维向量,Xt[i]为道路Ri在t+g时刻的真实拥堵指数,对道路网络的历史拥堵指数数据进行分割得到大量训练样本,从而建立训练样本集;

(3-2)预测模型构建:融合图卷积网络、循环神经网络和道路语义向量构建预测模型,对网络结构的解释如下:

输入层:网络的输入为样本St的数据部分WDt,将WDt以1小时为单位分割成168个N×d1维的小矩阵WDt1,WDt2,...,WDt168

卷积层:对每个小矩阵WDtk,将其和TG一起输入一个图卷积网络,该图卷积网络的输出为一个N×d2维的矩阵,则卷积层的最终输出为一个包含了168个N×d2维矩阵的序列;

循环层:将卷积层的输出输入一个长短期记忆网络,每个N×d2维矩阵输入一个长短期记忆网络单元,则长短期记忆网络的输出为一个包含了168个N×d3维矩阵的序列,取最后一个N×d3维矩阵作为循环层的输出;

融合层:将循环层的输出与道路网络语义矩阵SM进行横向拼接,得到一个N×(d3+k)维的矩阵作为输出;

输出层:首先将融合层的输出输入一个全连接层,然后将全连接层的输出输入一个softmax层,最终softmax层的输出为一个N维向量Yt,其中,Yt[i]代表为道路Ri在t+g时刻的预测拥堵指数。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811552071.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top