[发明专利]基于机器学习算法的用户网络异常行为发现方法及系统有效
申请号: | 201811553820.8 | 申请日: | 2018-12-18 |
公开(公告)号: | CN109714324B | 公开(公告)日: | 2021-06-22 |
发明(设计)人: | 陈伟;任竹艳;肖春黎;江煊丰 | 申请(专利权)人: | 中电福富信息科技有限公司 |
主分类号: | H04L29/06 | 分类号: | H04L29/06;G06F21/56;G06N7/00;G06N20/00 |
代理公司: | 福州君诚知识产权代理有限公司 35211 | 代理人: | 林瑾 |
地址: | 350000 福建省福州*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 机器 学习 算法 用户 网络 异常 行为 发现 方法 系统 | ||
本发明涉及一种基于机器学习算法的用户网络异常行为发现方法及系统,方法为采集网络流量数据进行深度包解析、清洗、集成、变换和规约,采用机器学习算法计算多个历史特征向量以构建用户行为模式矩阵,采用熵权法计算用户各历史特征向量的权重,采用朴素贝叶斯算法计算多个实时特征向量,进行加权计算以得到用户网络访问行为信任度评分,并采用熵权法更新权重,跟踪用户网络访问行为信任度评分变化,以判定用户是否存在异常行为。系统包括采集解析层、数据加工层、模型分析层和结果展示层,采集解析层具有数据采集模块、解析模块和匹配模块,数据加工层具有数据类型转换模块、去噪模块、数据清洗模块和数据标准化模块,模型分析层具有大数据分析引擎,结果展示层具有判断模块和显示模块。
技术领域
本发明涉及网络安全技术领域,具体涉及一种基于机器学习算法的用户网络异常行为发现方法及系统。
背景技术
随着互联网的飞速发展,通过对网络的被动监测,可以在用户无感知的环境下对网络情况进行深入洞察,从而针对日趋边界淡化的网络安全进行有效监测及防护,但存在以下问题:
1)传统的网络风险发现方式,主要是利用特征匹配、通讯检测等手段来发现通讯和应用中违反安全策略的行为,其依赖静态规则,很容易被颠覆,也很难动态更新。
2)传统的网络行为分析,主要针对网络的使用、连接进行全局性的分析,没有涉及到具体的网络交易行为,对于细节的用户行为把控及其可能产生的安全风险发现存在发现能力的不足。
3)针对用户画像技术虽可对用户的操作全貌进行总览,但目前的用户画像技术大多通过阈值设定的技术来生成指标值,标签值的量化存在局限性。
由于人类行为不稳定,难以预测,且网络中存在海量的用户操作行为,所涉及的数据量极大,通过人类自身无法实现识别,因此,用户行为分析一直是一个难题。
发明内容
本发明的目的在于针对现有技术的不足,提供一种至少能够克服上述部分问题的基于机器学习算法的用户网络异常行为发现方法及系统。
为实现上述第一个目的,本发明采用以下技术方案:
基于机器学习算法的用户网络异常行为发现方法,其包括以下步骤:
1)采集网络流量数据,对所得到的网络流量数据进行深度包解析,获得用户网络访问行为数据;
2)对用户网络访问行为数据进行清洗、集成、变换和规约,得到历史预处理数据和实时预处理数据;
3)对历史预处理数据采用机器学习算法进行计算,得到与用户历史网络访问行为特征相对应的多个历史特征向量,并根据多个历史特征向量构建用户行为模式矩阵;
4)采用熵权法对用户行为模式矩阵进行计算,得到用户各历史特征向量的权重;
5)对实时预处理数据采用朴素贝叶斯算法进行计算,得到与用户当前网络访问行为特征相对应的多个实时特征向量;
6)将多个实时特征向量与用户各历史特征向量的权重进行加权计算,得到用户网络访问行为信任度评分,并采用熵权法对多个实时特征向量进行计算,以更新用户各历史特征向量的权重;
7)重复步骤5)和步骤6)多次,以跟踪用户网络访问行为信任度评分变化,判断用户网络访问行为信任度评分是否多次降低,若是,则判定用户存在异常行为。
作为优选,所述历史特征向量和实时特征向量均由单维度特征和多维度特征构成,所述单维度特征由用户网络访问行为的URL参数、源IP、时间和操作系统中的一种以上构成,所述多维度特征由用户网络访问行为的登录地与HOST的组合特征、HOST与延迟的组合特征、HOST与操作系统的组合特征、以及时间与登录地的组合特征中的一种以上构成。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中电福富信息科技有限公司,未经中电福富信息科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811553820.8/2.html,转载请声明来源钻瓜专利网。