[发明专利]一种基于深度学习的混合区块链模型构建方法有效
申请号: | 201811562885.9 | 申请日: | 2018-12-20 |
公开(公告)号: | CN109710691B | 公开(公告)日: | 2020-08-28 |
发明(设计)人: | 黄晋;蔡钰;赵曦滨;胡昱坤;张恩德;刘尧 | 申请(专利权)人: | 清华大学;中车信息技术有限公司 |
主分类号: | G06F16/27 | 分类号: | G06F16/27 |
代理公司: | 北京律谱知识产权代理事务所(普通合伙) 11457 | 代理人: | 罗建书 |
地址: | 100084*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 学习 混合 区块 模型 构建 方法 | ||
本申请公开了一种基于深度学习的混合区块链模型构建方法,该方法中的参与节点用于根据公链数据和/或私链数据构建运算模型,任务节点用于根据运算模型,构建混合区块链模型,该方法包括:任务节点向参与节点发送任务要求;参与节点根据任务要求、存储于区块链中的公链数据和/或自身存储的私链数据,利用深度学习方法,构建神经网络训练模型,记作运算模型;任务节点获取运算模型,并利用深度学习算法融合运算模型,记作混合区块链模型。通过本申请中的技术方案,有利于提高区块链中私链数据的利用率,提高了根据区块链数据处理过程中的准确性。
技术领域
本申请涉及区块链技术领域,具体而言,涉及一种基于深度学习的混合区块链模型构建方法。
背景技术
区块链主要分为公链与私链两类。公链是一种去中心化,去信任的分布式记账体系,代表实例有比特币、以太坊等。存储于公链中的数据可以被任何人读取且保障数据正确性,用户可根据公链中的记录获取所需数据集进行筛选分析,训练神经网络。私链是指由某个组织或机构控制的区块链,由于参与节点的有限性与可控性,相比公链而言,私链因其较好的隐私保护机制得以记录大量私人数据,只有获得授权的用户才能使用私链数据训练模型。公私链间目前常用的交互方式为智能合约编程,交易双方事先约定智能合约,交易过程中智能合约对不同事件进行响应,自动执行合约内容,完成基于区块链数据的数学模型建立。
而现有技术中,主要存在以下几点问题。首先,区块链中的数据利用率较低,公链仅记录交易信息,而私链上非公开的私链数据蕴含大量未被利用的信息,导致私链数据难以发挥出真正价值。其次,由于公链中公开的数据十分有限,数学模型的泛化性能难以保证,常常出现过拟合现象,导致处理数据过程中的准确性偏低,模型质量难以得到真正提升。
发明内容
本申请的目的在于:提高了区块链中存储数据的利用率,降低了数学模型构建过程中出现过拟合现象的可能性,提高了数学模型的准确性。
本申请的技术方案是:提供了一种基于深度学习的混合区块链模型构建方法,该方法包括:
步骤1,任务节点向参与节点发送任务要求;
步骤2,参与节点根据任务要求、存储于区块链中的公链数据和/或自身存储的私链数据,利用深度学习方法,构建神经网络训练模型,记作运算模型;
步骤3,任务节点获取运算模型,并利用深度学习算法融合运算模型,记作混合区块链模型。
上述任一项技术方案中,进一步地,任务节点也可以为参与节点。
上述任一项技术方案中,进一步地,在步骤2之后,还包括:步骤21,确定至少两个参与节点为泛化节点;步骤22,泛化节点获取其余参与节点的运算模型,记作第一模型;步骤23,泛化节点利用自身存储的私链数据对第一模型进行检测;步骤24,当泛化节点判定第一模型符合要求时,将第一模型记作第二模型,并将第二模型发送至任务节点。
上述任一项技术方案中,进一步地,步骤24通过以下方法实现:泛化节点根据检测结果,对第一模型进行评分,记作第一泛化评分;计算各个泛化节点对任一第一模型的第一泛化评分的平均值,记作第一模型的第二泛化评分;当判定第二泛化评分大于或等于任务要求中的预设评分时,将第一模型记作第二模型,并将第二模型发送至任务节点。
上述任一项技术方案中,进一步地,步骤24通过以下方法实现:泛化节点根据检测结果,对第一模型进行评分,记作第一泛化评分;计算各个泛化节点对任一第一模型的第一泛化评分的平均值,记作第一模型的第二泛化评分;根据第二泛化评分,按照由高至低的顺序对第一模型进行排序;选取与任务要求中预设数量相等的第一模型记作第二模型,并将第二模型发送至任务节点。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学;中车信息技术有限公司,未经清华大学;中车信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811562885.9/2.html,转载请声明来源钻瓜专利网。