[发明专利]基于滑动平均算法的智能交通时段划分方法有效
申请号: | 201811600402.X | 申请日: | 2018-12-26 |
公开(公告)号: | CN109697849B | 公开(公告)日: | 2020-06-16 |
发明(设计)人: | 陈明;王勐;彭吉友 | 申请(专利权)人: | 航天科工广信智能技术有限公司 |
主分类号: | G08G1/01 | 分类号: | G08G1/01;G06Q10/06;G06Q50/30 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310004 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 滑动 平均 算法 智能 交通 时段 划分 方法 | ||
一种基于滑动平均算法的智能交通时段划分方法,包括以下步骤:1)获取交叉口道路流量信息;2)运用滑动平均算法对获取的数据进行平滑处理;3)通过平滑后的数据进行差分计算,得到相应的导数,即车流量的变化趋势;4)根据车流导数的不同变化特征,进行进一步的数据判别,将一日的交通状态划分成多个时段,为下一步配时方案的设计提供依据。本发明以滑动平均算法对数据进行平滑处理,以差分结果近似数据导数,对时段进行划分,能够更加灵敏地反应车流的数据变化趋势,对路网的交通状况进行更为准确的识别,提高配时方案的有效性。
技术领域
本发明涉及交通控制工程、大数据分析应用领域,尤其涉及交通峰谷状态识别和配时方案的时段划分方法。
背景技术
伴随着城市现代化程度提高,城市交通规模也保持着告诉增长的态势,传统交通技术开始难以适应社会发展的要求。由于交通流量变化的复杂性和不确定性,其中表现较为突出的是,受早晚高峰的影响,城市交通状态变化频繁、复杂,为了缓解城市交通状况,基于不同时段的特点,就需要配置不同的方案来疏通道路,因此,峰谷时段划分的准确性和有效性显得尤为重要。而目前适合于最常见的对实际车流数据设置阈值,以区分峰谷时段的方法,存在一定的局限性,难以精确描述交通流的变化态势。因此为了能有效提高时段划分的准确性,充分发挥配时方案的效果,本发明提出基于滑动平均算法的智能交通时段划分算法,以便与时段划分的结果能够更加精确地反应交通变化趋势,提高调度的有效性。
发明内容
为了克服城市路网交通状况复杂引起的峰谷时段划分困难,交通数据流量变化的波动性、时段性和随机性,纯粹以实际流量为标准的峰谷时段难以真实反馈路口状态,因此需对路口的交通状况进行更深入的研究,以更准确、贴切地描述路口交通变化情况。本发明提出一种基于滑动平均算法的智能交通时段划分方法。
本发明解决其技术问题所采用的技术方案是:
一种基于滑动平均算法的智能交通时段划分方法,包括以下步骤:
1)输入具体的日期、路口、车道,获取相应交叉口道路的流量信息;以Δt=5分钟为时间间隔,将一天划分为288个时段,从数据库获取到过车数据后,计算得到288维的车流量,记为V,其中V(t)代表当前路口t时段的车流量;
2)运用滑动平均算法对V进行平滑处理,计算方法如下公式(1)所示:
式中:τ为滑动的半个周期长度;wi为每个时段V的权重,其中∑wi=1;
为回归后的车流数据;
3)对进行差分计算,近似为车流的导函数d,计算如公式(2):
4)针对流量导数曲线进行进一步的数据判别,将一日的交通状态划分成多个时段,过程如下:
4.1)根据算法取阈值T,按阈值T把所有时段分为上升/下降时段和平稳时段
经过阈值T的切割,导数曲线可以变换为具有时间属性的状态数字序列s(t),其中状态数字为0,1;
4.2)开始划分时段,找到所有上升/下降,平稳的连续状态数字序列,即0,1作为一个时间段;
4.3)找到所有拐点所在处,根据前后时刻s(t)值,找到所有高峰时段的起始点和终止点,如公式(4)所示
式中:和分别是第i个高峰时段的起始时间和结束时间。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于航天科工广信智能技术有限公司,未经航天科工广信智能技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811600402.X/2.html,转载请声明来源钻瓜专利网。