[发明专利]一种快速稳定的动物个体基因组育种值评估方法有效
申请号: | 201811620927.X | 申请日: | 2018-12-28 |
公开(公告)号: | CN109524059B | 公开(公告)日: | 2023-02-28 |
发明(设计)人: | 赵书红;刘小磊;杨翔;李新云;朱猛进;项韬;马云龙;余梅;王志全;尹立林 | 申请(专利权)人: | 华中农业大学;广州影子科技有限公司 |
主分类号: | G16B20/00 | 分类号: | G16B20/00 |
代理公司: | 沈阳东大知识产权代理有限公司 21109 | 代理人: | 梁焱 |
地址: | 430070 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 快速 稳定 动物 个体 基因组 育种 评估 方法 | ||
本发明提供一种快速稳定的动物个体基因组育种值评估方法,涉及动物育种技术领域。该方法采用HIBLUP使用表型、基因型和谱系信息进行基因组育种值的预测,最终输出中包括估计的个体遗传价值、每个个体的加性效应和显性效应值以及用于基因分型芯片中的每个遗传标记效应的反向解析值。本发明全面利用谱系、表型和基因型信息来预测每个动物的遗传(加性和显性效应)价值以及每个SNP标记位点的效应值,实现最先进的基因组育种值的预测和方差组分估计算法而实现基因组选择。
技术领域
本发明涉及动物育种技术领域,尤其涉及一种快速稳定的动物个体基因组育种值评估方法。
背景技术
随着覆盖整个基因组高密度单核苷酸多态性(SNP)基因分型技术的发展,基因组选择(预测)作为基因组统计分析的强大工具,被广泛应用于植物和动物育种中复杂性状的遗传价值(种用价值)预测和评估,以及在人类遗传学研究中的应用也越来越多。方差组分的估计可能是基因组选择过程中最耗时的部分。在基因组选择中流行的方差组分估计算法,例如EMAI,需要迭代计算,并且每次迭代的计算复杂度非常高。以前的基因组选择程序需要计算基因组亲缘关系矩阵的逆矩阵,并且随着基因分型样本量的增加,计算时间也随之迅速增加。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,提出一种快速稳定的动物个体基因组育种值评估方法,基于HE-AI算法的BLUP(即最优线性无偏预测)被称为HIBLUP,HIBLUP全面利用谱系、表型和基因型信息来预测每个动物的遗传(加性和显性效应)价值以及每个SNP标记位点的效应值,实现最先进的基因组育种值的预测和方差组分估计算法而实现基因组选择。
为解决上述技术问题,本发明所采取的技术方案是:一种快速稳定的动物个体基因组育种值评估方法,以表型、基因型和谱系信息作为HIBLUP的输入信息,进而预测个体的基因组育种值,最终输出中包括估计的个体遗传价值、每个个体的加性效应和显性效应值以及用于基因分型芯片中的每个遗传标记效应的反向解析值;具体包括以下步骤:
步骤1:将基因型进行数值化,基因型AA、AB和BB的编码分别为0、1和2;分别使用Henderson列表法的谱系信息和VanRaden方法的基因组信息构建个体之间的关系A(亲缘相关IBD)矩阵和G(状态相关IBS)矩阵,然后根据A矩阵和G矩阵的信息,构建动物个体间的混合相关矩阵H,如下式所示:
根据群体中的动物个体是否具有基因分型信息将个体分成两种不同的群组,下角标为“1”的代表仅具有系谱而没有基因组分型信息的个体群组,下角标为“2”的代表同时具有谱系和基因组分型信息的个体群组;其中A11、A22分别表示群组“1”内个体之间的亲缘相关和群组“2”内个体之间的亲缘相关矩阵,A12表示群组“1”和群组“2”的个体之间的亲缘相关矩阵,并且A21是A12的转置矩阵,α是融合矩阵G和矩阵A22之间的关系调和百分比;
步骤2:使用HE回归算法从H矩阵和表型值导出遗传方差和残差方差,其方程如下:
其中,y为表型值向量;为第i个随机效应所解释的方差;为残差方差,n是模型中随机效应的数目;Aj为对称非负矩阵,为Aj的最优估计值,Ki和Kj分别是第i个和第j个加性效应协变量矩阵;
步骤3:将HE回归的遗传方差和残差方差设置为后续AI迭代的先验值,然后使用AI迭代算法推导遗传方差和残差方差至收敛标准,并得到所估计的遗传参数;
AI算法分部分描述为:
a.Newton-Raphson算法:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中农业大学;广州影子科技有限公司,未经华中农业大学;广州影子科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811620927.X/2.html,转载请声明来源钻瓜专利网。