[发明专利]一种基于自适应位置分割的车牌字符识别方法有效
申请号: | 201811624974.1 | 申请日: | 2018-12-28 |
公开(公告)号: | CN109815956B | 公开(公告)日: | 2022-12-09 |
发明(设计)人: | 张卡;何佳;尼秀明 | 申请(专利权)人: | 安徽清新互联信息科技有限公司 |
主分类号: | G06V30/148 | 分类号: | G06V30/148;G06V30/146;G06V20/62;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 合肥天明专利事务所(普通合伙) 34115 | 代理人: | 金凯 |
地址: | 230088 安徽省合肥市高新区创新*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 自适应 位置 分割 车牌 字符 识别 方法 | ||
本发明公开了一种基于自适应位置分割的车牌字符识别方法,属于车牌识别技术领域,包括构建深度神经网络模型,该深度神经网络模型包括基础网络、车牌位置校正网络、车牌字符分割网络和车牌字符识别网络;收集车牌样本图像,对所构建的深度神经网络模型进行训练,得到自适应字符分割识别模;利用自适应字符分割识别模,对待识别车牌图像进行车牌字符识别。本发明不再严格意义上区分车牌位置校正、车牌字符分割、车牌字符识别等步骤,借助一个深度神经网络结构模型,直接完成车牌位置校正、车牌字符分割、字符识别,兼顾了车牌识别准确率和识别速度。
技术领域
本发明涉及车牌识别技术领域,特别涉及一种基于自适应位置分割的车牌字符识别方法。
背景技术
车牌识别是智能交通的核心技术,包含了两个大部分:车牌位置检测和车牌字符识别。其中,车牌字符识别是整个技术最重要的一部分,车牌字符识别引擎的质量,直接决定车牌识别技术的整体性能。
车牌字符识别是指在一幅已知车牌位置的图像中,准确无遗漏的识别出该车牌上的所有汉字、字符和数字,具体包括以下技术步骤:车牌位置校正、车牌字符分割、车牌字符识别等。
车牌位置校正是指对位置不理想的初检测车牌进行空间变换,使之成为理想位置的车牌,方便后续进行精确的字符分割,空间变换包括平移变换、旋转变换、缩放变换、错切变换、透视变换等,常用的校正方法有以下几类:
(1)基于直线检测的方法,代表方法有“基于hough直线检测的校正方法”和“基于radon直线检测的校正方法”,其原理是直接检测车牌上的直线,根据直线的倾斜角度进行车牌位置校正。
(2)基于遍历查找的方法,代表方法有“基于旋转投影的校正方法”。其原理是首先将车牌旋转到每一个允许的角度位置,然后进行投影获取相应的特征值,通过比较获取最佳的特征值,此时对应的角度就是最佳的车牌倾斜角度。
(3)基于特征分析的方法,代表方法有“基于主元分析的校正方法”基于最小二乘法的校正方法,该类方法直接对灰度图像或者二值化图像进行整体的分析,获取整体意义上的最优校正参数。
车牌字符分割是指在一幅已知车牌位置的图像中,精确分割出每个单一字符,主要有以下几类方法:
(1)基于垂直投影的方法,该方法通过获取车牌字符的垂直投影曲线,依据曲线的波峰波谷位置,获取每个字符的边缘位置。
(2)基于连通区域分析的方法,该方法首先进行车牌图像二值化,利用单个字符都是单连通区域的特征进行分析,最终获取字符的位置。
(3)基于机器学习的方法,如“一种基于支持向量机的车牌字符分割方法”,该类方法通过获取车牌的布局规律特征,借助分类器进行训练学习,最终完成车牌字符的分割。
车牌字符识别是指对于已经精确分割的单个字符,识别出其真实的字母意义,常用的方法有以下几类:
(1)全局特征,该类特征采用全局变换来获取字符的整体特征,使用有序的整体特征或者子集特征来构成特征向量,常见的特征有GABOR变换特征、矩特征、投影特征、笔划密度特征、HARR特征、HOG特征等。这些特征的优点是对局部变化不敏感,抗干扰能力强;其缺点是容易忽略某些重要的局部特征,无法区分相似的字符。
(2)局部特征,该类特征是在字符的多个局部区域内,计算相应的特征,使用串联的有序局部特征构成最终的特征向量,主要特征包括局部灰度直方图特征、LBP特征、穿线特征、SIFT特征等。该类特征的优点是区分字符的能力强;其缺点是过分关注字符的局部特征,往往会错误区分具有噪声干扰的字符。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽清新互联信息科技有限公司,未经安徽清新互联信息科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811624974.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:题目辅助方法及系统
- 下一篇:一种基于彩色图像在复杂背景下的文字识别方法